SKILLCERTPRO

Exam AZ-204: Developing Solutions for Microsoft
Azure Master Cheat Sheet

References

Microsoft Certifications - AZ-204

Microsoft Learning Labs - AZ-204
Topics:

1. Create serverless applications

1. Choose the best Azure service to automate your business processes
2. Create serverless logic with Azure Functions

3. Execute an Azure Function with triggers

4. Chain Azure Functions together using input and output bindings

5. Create a long-running serverless workflow with Durable Functions

6. Develop, test, and publish Azure Functions by using Azure Functions Core
Tools

7. Develop, test, and deploy an Azure Function with Visual Studio
8. Monitor GitHub events by using a webhook with Azure Functions

9. Enable automatic updates in a web application using Azure Functions and
SignalR Service

2. Connect your services together

1. Choose a messaging model in Azure to loosely connect your services
2. Implement message-based communication workflows with Azure Service Bus
3. Communicate between applications with Azure Queue storage

4. Enable reliable messaging for Big Data applications using Azure Event Hubs

pg. 1

https://docs.microsoft.com/en-us/learn/certifications/exams/az-204
https://microsoftlearning.github.io/AZ-204-DevelopingSolutionsforMicrosoftAzure
https://docs.microsoft.com/en-us/learn/paths/create-serverless-applications/
https://docs.microsoft.com/en-us/learn/paths/connect-your-services-together/

SKILLCERTPRO

3. Work with relational data in Azure

1. Provision an Azure SQL database to store application data
2. Create an Azure Database for PostgreSQL server

3. Scale multiple Azure SQL Databases with SQL elastic pools
4. Secure your Azure SQL Database

5. Develop and configure an ASP.NET application that queries an Azure SQL
database

4. Store data in Azure

1. Choose a data storage approach in Azure
2. Create an Azure Storage account
3. Connect an app to Azure Storage

4. Secure your Azure Storage account

u

Store application data with Azure Blob storage

5. Deploy a website with Azure virtual machines

—

Introduction to Azure virtual machines
2. Create a Linux virtual machine in Azure
3. Create a Windows virtual machine in Azure

4. Build and run a web application with the MEAN stack on an Azure Linux virtual
machine

1. Create Serverless Applications

1. Choose the best Azure service to automate your business processes

Business processes modeled in software are often called workflows. Azure includes
four different technologies that you can use to build and implement workflows that
integrate multiple systems

pg. 2

https://docs.microsoft.com/en-us/learn/paths/work-with-relational-data-in-azure/
https://docs.microsoft.com/en-us/learn/paths/store-data-in-azure/
https://docs.microsoft.com/en-us/learn/paths/deploy-a-website-with-azure-virtual-machines/

SKILLCERTPRO

e Logic Apps

e Microsoft Power Automate
e« WebJobs

e Azure Functions

These four technologies have the following similarities

Accept Inputs
Run Actions

Include Condition

Produce Output

Triggered on a schedule or other external events

Design-First Approach
It includes user interface in which you can design the workflow and includes the
following technologies:

e Logic Apps
A service that you can use to automate, orchestrate and integrate disparate
components of a distributed application. You can use Logic Apps Designer to
define the workflow. Alternatively, you may prefer to code the workflow in
JSON notations using the code-view.
A connector is a Logic Apps component that provides an interface to an
external service. Logic Apps provides hundreds of pre-built connectors that
you can use to create your apps. If you have an unusual or unique system that
you want to call from a Logic Apps, you can create your own connector if your
system exposes a REST API.

e Microsoft Power Automate
A service that you can use to create workflows even when you have no IT Pro
experience. You can create workflows that integrate and orchestrate many
different components by using the web or mobile app.
Under the hood, Microsoft Power Automate is built on Logic Apps. This fact
means that Power Automate supports the same range of connectors and
actions. You can also use custom connectors in Microsoft Power Automate.

Design-First technologies compared

pg. 3

SKILLCERTPRO

Microsoft Power

Automate Logic Apps

Office workers Developers and IT

Intended users and business
pros
analysts
Browser and Visual
GUI only. : .
. Studio designer.
Intended scenarios Browser and LT
. Code editing is
mobile app

possible

Logic Apps source
Power Automate code can be

Application Lifecycle Management includes test.ing included in Azure
and production DevOps and source
environments code management

systems

If you choose a design-first
approach, the workflow is visualized
in an easy-to-understand design
surface. In addition, that diagram is
not a separate document, but a
picture of the process as it is
implemented. The benefit is that
there's no possibility that the
diagram is not updated when the
process is changed.

Code-First Approach

When you need more control over the performance of your workflow or need to
write custom code as part of your business process, the following technologies
would help:

o Azure WebJobs
WeblJobs are a part of the Azure App Service that you can use to run a
program or script automatically. The two kinds are:

o Continous
o Triggered

pg. 4

SKILLCERTPRO

You can create a Webjob by using Shell Scripts (Windows, Powershell, Bash) or
by writing a program in PHP, Python, Node,js, or Java. You can also program a
WebJob by using the .NET Framework or the .NET Core Framework and a .NET
language such as C# or VB.NET.

Along with C# .NET you can use the WebJobs SDK which includes a range of
classes, such as JobHostConfiguration and HostBuilder, which reduce the
amount of code required to interact with the Azure App Service.

e Azure Functions An Azure Function is a simple way for you to run small
pieces of code in the cloud, without having to worry about the infrastructure
required to host that code. You can write the Function in C#, Java, JavaScript,
PowerShell, Python, or any of the languages that are listed in the Supported
languages in Azure Functions article. In addition, with the consumption plan
option, you only pay for the time when the code runs. Azure automatically
scales your function in response to the demand from users.

Following is the list of function triggers:

o HTTPTrigger

o TimerTrigger

o BlobTrigger

o CosmosDBTrigger

Azure Functions can integrate with many different services both within Azure
and from third parties. These services can trigger your function, or send data
input to your function, or receive data output from your function.

Code-First technologies compared

In most cases, the simple administration and more flexible coding model provided by
Azure Functions may lead you to choose them in preference to WebJobs. However,
you may choose WeblJobs for the following reasons:

« You want the code to be a part of an existing App Service application and to
be managed as part of that application, for example in the same Azure
DevOps environment.

» You need close control over the object that listens for events that trigger the
code. This object in question is the JobHost class, and you have more
flexibility to modify its behavior in WebJobs.

pg. 5

https://docs.microsoft.com/azure/azure-functions/supported-languages
https://docs.microsoft.com/azure/azure-functions/supported-languages

SKILLCERTPRO

Azure WebJobs Azure Functions

Supported languages C# if you are using the C#, Java, JavaScript,

WebJobs SDK PowerShell, etc.
Automatic scaling No Yes
Pevelopment and testing No Ves
in a browser
Pay-per-use pricing No Yes
Integration with Logic No Ves

Apps

NuGet if you are using

Package managers the WebJobs SDK

Nuget and NPM

Can be part of an App

. N Yes No
Service application

Provides close control of

Y N
JobHost es °

| you choose a code-first approach, you can develop a complex business logic and
wrap the solution in a custom connector which can be integrated with Logic Apps or
Power Automate. As a developer, you get more flexibility by this approach.

pg. 6

SKILLCERTPRO

Yes

Developers

Azure
Function

Power
Automate

2. Create serverless logic with Azure Functions

What is serverless compute? Serverless compute can be thought of as a function as
a service (FaaS), or a microservice that is hosted on a cloud platform. Your business
logic runs as functions and you don't have to manually provision or scale
infrastructure. The cloud provider manages infrastructure. Your app is automatically
scaled out or down depending on load. Azure has several ways to build this sort of
architecture. The two most common approaches are Azure Logic Apps and Azure
Functions, which we focus on in this module.

Benefits of serverless compute solution

Avoids over-allocation of infrastructure - Suppose you've provisioned VM servers
and configured them with enough resources to handle your peak load times. When
the load is light, you are potentially paying for infrastructure you're not using.
Serverless computing helps solve the allocation problem by scaling up or down
automatically, and you're only billed when your function is processing work.

Stateless logic - Stateless functions are great candidates for serverless compute;
function instances are created and destroyed on demand. If state is required, it can
be stored in an associated storage service.

Event driven - Functions are event driven. This means they run only in response to
an event (called a "trigger"), such as receiving an HTTP request, or a message being
added to a queue. You configure a trigger as part of the function definition. This

pg. 7

SKILLCERTPRO

approach simplifies your code by allowing you to declare where the data comes from
(trigger/input binding) and where it goes (output binding).

Funtions can be used in traditional compute environments - Functions are a key
component of serverless computing, but they are also a general compute platform
for executing any type of code. Should the needs of your app change, you can take
your project and deploy it in a non-serverless environment, which gives you the
flexibility to manage scaling, run on virtual networks, and even completely isolate
your functions.

Drawbacks of serverless compute solution

Execution time - By default, functions have a timeout of 5 minutes. This timeout is
configurable to a maximum of 10 minutes. If your function requires more than 10
minutes to execute, you can host it on a VM. Additionally, if your service is initiated
through an HTTP request and you expect that value as an HTTP response, the
timeout is further restricted to 2.5 minutes. Finally, there's also an option called
Durable Functions that allows you to orchestrate the executions of multiple functions
without any timeout.

Execution frequency - The second characteristic is execution frequency. If you
expect your function to be executed continuously by multiple clients, it would be
prudent to estimate the usage and calculate the cost of using functions accordingly.
It might be cheaper to host your service on a VM.

While scaling, only one function app instance can be created every 10 seconds, for up
to 200 total instances. Keep in mind, each instance can service multiple concurrent
executions, so there is no set limit on how much traffic a single instance can handle.
Different types of triggers have different scaling requirements, so research your choice
of trigger and investigate its limits.

Exercise - Create a function app in the Azure portal
Choosing a service plan

Consumption service plan - This is the plan that you choose when using the Azure
serverless application platform. The Consumption service plan provides automatic
scaling and bills you when your functions are running. The Consumption plan comes
with a configurable timeout period for the execution of a function. By default, it is 5
minutes, but may be configured to have a timeout as long as 10 minutes.

Azure App Service plan - This plan allows you to avoid timeout periods by having
your function run continuously on a VM that you define. When using an App Service
plan, you are responsible for managing the app resources the function runs on, so

pg. 8

https://docs.microsoft.com/en-gb/learn/modules/create-serverless-logic-with-azure-functions/3-create-an-azure-functions-app-in-the-azure-portal?pivots=javascript

SKILLCERTPRO

this is technically not a serverless plan. However, it may be a better choice if your
functions are used continuously or if your functions require more processing power
or execution time than the Consumption plan can provide.

Storage account requirements

When you create a function app, it must be linked to a storage account. You can
select an existing account or create a new one. The function app uses this storage
account for internal operations such as logging function executions and managing
execution triggers. On the Consumption service plan, this is also where the function
code and configuration file are stored.

Triggers
The type of event that starts the function is called a trigger. You must configure a
function with exactly one trigger. Azure supports triggers for the following services:

Service Trigger Description
Blob storage Start a function when a new or updated blob is detected.

Azure Cosmos . .
Start a function when inserts and updates are detected.

DB

Event Grid Start a function when an event is received from Event Grid.
HTTP Start a function with an HTTP request.

Microsoft Start a function in response to an incoming webhook from the

Microsoft Graph. Each instance of this trigger can react to one

hE :
Graph Events Microsoft Graph resource type.

Queue Start a function when a new item is received on a queue. The
storage queue message is provided as input to the function.

Start a function in response to messages from a Service Bus

Service Bus
queue.
Timer Start a function on a schedule.
Bindings

Bindings are a declarative way to connect data and services to your function.

pg. 9

SKILLCERTPRO

Bindings know how to talk to different services, which means you don't have to write
code in your function to connect to data sources and manage connections. The
platform takes care of that complexity for you as part of the binding code. Each
binding has a direction - your code reads data from input bindings and writes data
to output bindings. Each function can have zero or more bindings to manage the
input and output data processed by the function.

Monitoring dashboard

The Azure portal provides a monitoring dashboard available if you turn on the
Application Insights integration. This monitor dashboard provides a quick way to
view the log of function executions populated by Application Insights.

Exercise - Add logic to the function app

Securing HTTP triggers

When you create a HTTP triggered function, you select the authorization level. By
default, it's set to "Function”, which requires a function-specific API key, but it can
also be set to "Admin" to use a global "master" key, or "Anonymous" to indicate that
no key is required. You can also change the authorization level through the function
properties after creation. You should pass the function-specific API key in the header
of an HTTP request as 'x-funcion-key' being the key.

3. Execute an Azure Function with triggers

What is a CRON expression? A CRON expression is a string that consists of six fields
that represent a set of times.

The order of the six fields in Azure is: {second} {minute} {hour} {day} {month} {day of
the week}.

For example, a CRON expression to create a trigger that executes every five minutes
looks like: O */5 * * * *

Special characters in CRON expression

Special
Ch:::;:er Meaning Example
. Selects every An asterisk "*" in the day of the week field means
value in a field every day.

pg. 10

https://docs.microsoft.com/en-gb/learn/modules/create-serverless-logic-with-azure-functions/5-add-logic-to-the-function-app?pivots=javascript

SKILLCERTPRO

Special

Character Meaning Example

A comma "1,3" in the day of the week field
means just Mondays (day 1) and Wednesdays
(day 3).

Separates items
in a list

A hyphen "10-12" in the hour field means a

i Specifi
peciies a range range that includes the hours 10, 11, and 12.

Specifies an A slash "*/10" in the minutes field means an
increment increment of every 10 minutes.

Exercise - Create a timer trigger

What is an HTTP trigger Authorization level? - An HTTP trigger Authorization level
is a flag that indicates if an incoming HTTP request needs an API key for
authentication reasons.

There are three Authorization levels:

o Function
¢ Anonymous
e Admin

The Function and Admin levels are "key" based. There are two types of keys:
function and host. Function keys are specific to a function. Host keys apply to all
functions inside the function app. If your Authorization level is set to Function, you
can use either a function or a host key. If your Authorization level is set to Admin,
you must supply a host key.

The Anonymous level means that there's no authentication required.

Exercise - Create an HTTP trigger

What is Azure Blob storage? - Azure Blob storage is an object storage solution
that's designed to store large amounts of unstructured data.
For example, Azure Blob storage is great at doing things like:

e Storing files

e Serving files

e Streaming video and audio
e Logging data

pg. 11

https://docs.microsoft.com/en-us/learn/modules/execute-azure-function-with-triggers/4-create-timer-trigger?pivots=csharp
https://docs.microsoft.com/en-us/learn/modules/execute-azure-function-with-triggers/6-create-http-trigger?pivots=csharp

SKILLCERTPRO

There are three types of blobs: block blobs, append blobs, and page blobs. Block
blobs are the most common type. They allow you to store text or binary data
efficiently. Append blobs are like block blobs, but they're designed more for append
operations like creating a log file that's being constantly updated. Finally, page blobs
are made up of pages and are designed for frequent random read and write
operations.

4. Chain Azure Functions together using input and output bindings
Types of bindings

o Input binding - An input binding is a connection to a data source. Our
function can read data from these inputs.

e Output binding - An output binding is a connection to a data destination.
Our function can write data to these destinations.

Triggers are special types of input bindings that cause a function to execute.

Types of supported bindings

A binding type can be used as an input, an output or both. For example, a function
can write to Azure Blob Storage output binding, but a blob storage update could
trigger another function.

Some common binding types are listed below:

e Blob Storage

e Azure Service Bus Queues
e Azure Cosmos DB

e Azure Event Hubs

e External Files

e External Tables

o HTTP endpoints

These types are just a sample. There are more, plus functions have an extensibility
model to add more bindings.

Binding properties

e Name - Defines the function parameter through which you access the data.
For example, in a queue input binding, this is the name of the function
parameter that receives the queue message content.

pg. 12

SKILLCERTPRO

o Type - Identifies the type of binding, i.e., the type of data or service we want
to interact with.

o Direction - Indicates the direction data is flowing, i.e., is it an input or output
binding?

o Connection - Provides the name of an app setting key that contains the
connection string. Bindings use connection strings stored in app settings to
keep secrets out of the function code. It is only used for bindings which
require connection string.

Create a binding

Bindings are defined in JSON. A binding is configured in your function's
configuration file, which is named function.json and lives in the same folder as your
function code. Following is a sample of binding definition.

"name": "headshotBlob",

lltypell: Ilblobll)

"path": "thumbnail-images/{filename}",
"connection"”: "HeadshotStorageConnection”,
"direction": "in"

}s
Exercise - Explore input and output binding types

What is a binding expression? - A binding expression is specialized text in
functionjson, function parameters, or code that is evaluated when the function is
invoked to yield a value. For example, if you have a Service Bus Queue binding, you
could use a binding expression to get the name of the queue from App Settings.

Types of binding expressions

e App settings

o Trigger file name

e Trigger metadata

e JSON payloads

e New GUID

o Current date and time

Most expressions are identified by wrapping them in curly braces. However, app
setting binding expressions are wrapped in percent signs rather than curly braces.
For example if the blob output binding path is %Environment%/newblob.txt and the
Environment app setting value is Development, a blob will be created in the
Development container.

pg. 13

https://docs.microsoft.com/en-gb/learn/modules/chain-azure-functions-data-using-bindings/3-explore-input-and-output-binding-types-portal-lab?pivots=javascript

SKILLCERTPRO

Exercise - Read data with input bindings
Exercise - Write data with output bindings

Combining input and output bindings

It's possible to apply multiple bindings to a single function. This allows you to define
both input and output bindings, and the input and output can even be the same
binding type.

5. Create a long-running serverless workflow with Durable Functions

What is Durable functions? - Durable functions are an extension of Azure
Functions. Whereas Azure Functions operate in a stateless environment, Durable
Functions can retain state between function calls. This approach enables you to
simplify complex stateful executions in a serverless-environment.

Durable Functions scales as needed, and provides a cost effective means of
implementing complex workflows in the cloud. Some benefits of using Durable
Functions include:

o They enable you to write event driven code. A durable function can wait
asynchronously for one or more external events, and then perform a series of
tasks in response to these events.

« You can chain functions together. You can implement common patterns such
as fan-out/fan-in, which uses one function to invoke others in parallel, and
then accumulate the results.

e You can orchestrate and coordinate functions, and specify the order in which
functions should execute.

« The state is managed for you. You don't have to write your own code to save
state information for a long-running function.

Durable functions allows you to define stateful workflows using an Orchestration
function. An orchestration function provides these extra benefits:

e You can define the workflows in code. You don't need to write a JSON
description or use a workflow design tool.

e Functions can be called both synchronously and asynchronously. Output from
the called functions is saved locally in variables and used in subsequent
function calls.

e Azure checkpoints the progress of a function automatically when the function
awaits. Azure may choose to dehydrate the function and save its state while

pg. 14

https://docs.microsoft.com/en-gb/learn/modules/chain-azure-functions-data-using-bindings/5-read-data-with-input-bindings-portal-lab?pivots=javascript
https://docs.microsoft.com/en-gb/learn/modules/chain-azure-functions-data-using-bindings/7-write-data-with-output-bindings-portal-lab?pivots=javascript

SKILLCERTPRO

the function waits, to preserve resources and reduce costs. When the function
starts running again, Azure will rehydrate it and restore its state.

Function types
You can use three durable function types: client, orchestrator, and activity.

o Client functions are the entry point for creating an instance of a Durable
Functions orchestration. They can run in response to an event from many
sources, such as a new HTTP request arriving, a message being posted to a
message queue, an event arriving in an event stream. You can write them in
any of the supported languages.

o Orchestrator functions describe how actions are executed, and the order in
which they are run. You write the orchestration logic in code (C# or
JavaScript).

« Activity functions are the basic units of work in a durable function
orchestration. An activity function contains the actual work performed by the
tasks being orchestrated.

Application patterns
You can use Durable Functions to implement many common workflow patterns.
These patterns include:

o Function chaining - In this pattern, the workflow executes a sequence of
functions in a specified order. The output of one function is applied to the
input of the next function in the sequence. The output of the final function is
used to generate a result.

o Fan out/fan in - This pattern runs multiple functions in parallel and then waits
for all the functions to finish. The results of the parallel executions can be
aggregated or used to compute a final result.

o Async HTTP APIs - This pattern addresses the problem of coordinating state
of long-running operations with external clients. An HTTP call can trigger the
long-running action. Then, it can redirect the client to a status endpoint. The
client can learn when the operation is finished by polling this endpoint.

e Monitor - This pattern implements a recurring process in a workflow, possibly
looking for a change in state. For example, you could use this pattern to poll
until specific conditions are met.

e Human interaction - This pattern combines automated processes that also
involve some human interaction. Human interaction can be incorporated
using timeouts and compensation logic that runs if the human fails to interact
correctly within a specified response time. An approval process is an example
of a process that involves human interaction.

pg. 15

SKILLCERTPRO

Exercise - Create a workflow using Durable Functions

Timers in Durable Functions

Durable Functions provides timers for use in the orchestrator functions. They can
implement delays or set up timeouts for asynchronous actions. Use durable timers in
orchestrator functions instead of the setTimeout() and setlnterval() functions.

You create a durable timer by calling the createTimer method of the
DurableOrchestrationContext. This method returns a task that resumes on a specified
date and time.

Using timers for delay
The following example illustrates how to use durable timers for delay. The example
sends a reminder every day for 10 days.

const df = require("durable-functions");
const moment = require("moment");

module.exports = df.orchestrator(function*(context) {
for (let i = 0; i < 10; i++) {
const dayOfMonth = context.df.currentUtcDateTime.getDate();
const deadline = moment.utc(context.df.currentUtcDateTime).add(1, 'd');
yield context.df.createTimer(deadline.toDate());
yield context.df.callActivity("SendReminder");

}
})s

Always use currentUtcDateTime to obtain the current date and time, instead
of Date.now or Date.UTC.

Using timers for timeout

The following example illustrates how to use durable timers for timeout. Executing a
different path if a timeout occurs. In this example, the function waits until either the
GetQuote activity function completes or the deadline timer expires. If the activity
function completes the code follows the success case, otherwise it follows the
timeout case.

const df = require("durable-functions");
const moment = require("moment");

module.exports = df.orchestrator(function*(context) {
const deadline = moment.utc(context.df.currentUtcDateTime).add(30, "s");

const activityTask = context.df.callActivity("GetQuote");
const timeoutTask = context.df.createTimer(deadline.toDate());

const winner = yield context.df.Task.any([activityTask, timeoutTask]);
if (winner === activityTask) {

// success case

timeoutTask.cancel();

return true;

}

else

pg. 16

https://docs.microsoft.com/en-gb/learn/modules/create-long-running-serverless-workflow-with-durable-functions/4-exercise-create-a-workflow-using-durable-functions

SKILLCERTPRO

{

// timeout case
return false;

}
})s

Exercise - Add a durable timer to manage a long-running task

6. Develop, test, and publish Azure Functions by using Azure Functions Core
Tools

Exercise - Create a function locally by using the Core Tools

Exercise - Publish a function to Azure by using the Core Tools

7. Develop, test, and deploy an Azure Function with Visual Studio

Structure of an Azure Function
An Azure Function is implemented as a static class. The class provides a static,
asynchronous method named Run, which acts as the entry point for the function.

The parameters passed to the Run method provide the context for the trigger. In the
case of an HTTP trigger, the function receives an HttpRequest object. This object
contains the header and body of the request. You can access the data in the request
using the same techniques available in any HTTP application. The attributes applied
to this attribute specify the authorization requirements (Anonymous in this case), and
the HTTP operations to which the Azure function responds (GET and POST).

public static class Functionl
{
[FunctionName("Function1")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", "post", Route = null)]
HttpRequest req,
ILogger log)
{

log.LogInformation("C# HTTP trigger function processed a request.");
string name = req.Query["name"];

string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject(requestBody);
name = name ?? data?.name;

return name != null
? (ActionResult)new OkObjectResult($"Hello, {name}")
: new BadRequestObjectResult("Please pass a name on the query string
or in the request body");

pg. 17

https://docs.microsoft.com/en-gb/learn/modules/create-long-running-serverless-workflow-with-durable-functions/6-exercise-add-a-durable-timer-to-manage-a-long-running-task
https://docs.microsoft.com/en-gb/learn/modules/develop-test-deploy-azure-functions-with-core-tools/3-exercise-create-function-core-tools
https://docs.microsoft.com/en-gb/learn/modules/develop-test-deploy-azure-functions-with-core-tools/5-exercise-publish-function-core-tools

SKILLCERTPRO

}
}

The function returns a value containing any output data and results, wrapped in an
|ActionResult object. The value is returned in the body of the HTTP response for the
request.

Different types of trigger receive different input parameters and return types. The
next example shows the code generated for a Blob trigger. In this example, the
contents of the blob is made accessible through a Stream object, and the name of
the blob is also provided. No data is returned by the trigger; its purpose is to read
and process the data in the named blob:

public static class Function2

{

[FunctionName("Function2")]
public static void Run([BlobTrigger("samples-workitems/{name}", Connection =
"XXXXXXXXXXXXXXXXXXXXXXX")]Stream myBlob, string name, ILogger log)

{
log.LogInformation($"C# Blob trigger function Processed blob\n Name:{name}
\n Size: {myBlob.Length} Bytes");
}
}

In all cases, an Azure Function is passed an ILogger parameter. The function can use
this parameter to write log messages, which the function app will write to storage for
later analysis.

An Azure Function also contains metadata that specify the type of the trigger and
any other specific information and security requirements. You can modify this
metadata using the HttpTrigger, BlobTrigger, or other trigger attributes, as shown in
the examples. The FunctionName attribute that precedes the function is an identifier
for the function used by the function app. This name doesn't have to be the same as
the name of the function, but it's good practice to keep them synchronized to avoid
confusion.

Exercise - Create and test a simple Azure Function locally with Visual Studio

Publish a simple Azure Function

An Azure Function runs in the cloud in the context of an Azure Function App. A
function app is a container that specifies the operating system for running an Azure
Function, together with the resources available, such as the memory, computing
power, and disk space. The Azure Function App also provides the public URL for
running your functions. Behind the scenes, an Azure Function App is a collection of
one or more virtual machines, running a web server. When you publish an Azure
Function, you deploy it to these virtual machines.

There are several of options available for publishing an Azure Function. In this unit,
you'll learn about some of these options.

pg. 18

https://docs.microsoft.com/en-gb/learn/modules/develop-test-deploy-azure-functions-with-visual-studio/3-exercise-develop-and-test-azure-functions-locally

SKILLCERTPRO

e Deploy from Visual Studio - Azure Functions tools for Visual Studio enable
you to deploy an Azure Function directly from Visual Studio. The Azure
Functions template provides a Publish wizard. Using this wizard, you connect
to your Azure account, and either specify an existing Azure Function App, or
create a new one. The functions in your project are rebuilt and then deployed
to the Azure Function App.

e Continuous deployment - Azure Functions makes it easy to deploy your
function app using App Service continuous integration. Azure Functions
integrates with BitBucket, Dropbox, GitHub, and Azure DevOps. This enables a
workflow where function code updates made by using one of these integrated
services triggers deployment to Azure.

o Zip deployment - Azure Function can be deployed from a zip file using the
push deployment technique. You can do this with the Azure CLI, or by using
the REST interface.

Exercise - Publish a simple Azure Function

Exercise - Unit test an Azure Function

8. Monitor GitHub events by using a webhook with Azure Functions

Webhooks are user-defined HTTP callbacks. They offer a lightweight mechanism for
apps to be notified by another service when something of interest happens via an
HTTP endpoint. You can use a webhook to trigger an Azure function, and then
analyze the message, to determine what happened and how to respond.

Exercise - Create an Azure function triggered by a webhook
Exercise - Set up a webhook for a GitHub repository
Exercise - Trigger an Azure Function with a GitHub event

Exercise - Secure webhook payloads with a secret

9. Enable automatic updates in a web application using Azure Functions and
SignalR Service

SignalR and persistent connections

In contrast to polling, a more favorable design features persistent connections
between the client and server. Establishing a persistent connection allows the server
to push data to the client at will. The on-demand nature of the connection reduces

pg. 19

https://docs.microsoft.com/en-gb/learn/modules/develop-test-deploy-azure-functions-with-visual-studio/5-exercise-publish-azure-functions
https://docs.microsoft.com/en-gb/learn/modules/develop-test-deploy-azure-functions-with-visual-studio/6-unit-test-azure-functions
https://docs.microsoft.com/en-gb/learn/modules/monitor-github-events-with-a-function-triggered-by-a-webhook/3-exercise-create-function-triggered-by-webhook
https://docs.microsoft.com/en-gb/learn/modules/monitor-github-events-with-a-function-triggered-by-a-webhook/5-exercise-setup-webhook-for-github-repo
https://docs.microsoft.com/en-gb/learn/modules/monitor-github-events-with-a-function-triggered-by-a-webhook/7-exercise-trigger-function-with-github-event
https://docs.microsoft.com/en-gb/learn/modules/monitor-github-events-with-a-function-triggered-by-a-webhook/9-exercise-secure-webhook-payloads-with-secret

SKILLCERTPRO

network traffic and load on the server. SignalR allows you to easily add this type of
architecture to your application.

SignalR is an abstraction for a series of technologies that allows your app to enjoy
two-way communication between the client and server. SignalR handles connection
management automatically, and lets you broadcast messages to all connected clients
simultaneously, like a chat room. You can also send messages to specific clients. The
connection between the client and server is persistent, unlike a classic HTTP
connection, which is re-established for each communication.

A key benefit of the abstraction provided by SignalR is the way it supports
"transport” fallbacks. A transport is method of communicating between the client
and server. SignalR connections begin with a standard HTTP request. As the server
evaluates the connection, the most appropriate communication method (transport) is
selected. Transports are chosen depending on the APIs available on the client.

For clients that support HTML 5, the WebSockets API transport is used by default. If

the client doesn't support WebSockets, then SignalR falls back to Server Sent Events
(also known as EventSource). For older clients, Ajax long polling or Forever Frame (IE
only) is used to mimic a two-way connection.

The abstraction layer offered by SignalR provides two benefits to your application.
The first advantage is future-proofing your app. As the web evolves and APIs
superior to WebSockets become available, your application doesn't need to change.
You could update to a version of SignalR that supports any new APIs and your
application code won't need an overhaul.

The second benefit is that SignalR allows your application to gracefully degrade
depending on supported technologies of the client. If it doesn't support WebSockets,
then Server Sent Events are used. If the client can't handle Server Sent Events, then it
uses Ajax long polling, and so on.

Exercise — Enable automatic updates in a web application using SignalR Service

Use a storage account to host a static website

Azure Storage includes a feature where you can place files in a specific storage
container, which makes them available for HTTP requests. This feature, known as
static website support makes hosting publicly available web pages a simple process.

When you copy files to a storage container named $web, those files are available to
web browsers via a secure server using the
https://<ACCOUNT_NAME>.<ZONE_NAME>.web.core.windows.net/<FILE_NAME >
URI scheme.

pg. 20

https://docs.microsoft.com/en-gb/learn/modules/automatic-update-of-a-webapp-using-azure-functions-and-signalr/5-exercise-enable-automatic-updates-in-a-web-app-using-signalr

SKILLCERTPRO

Exercise - Use a storage account to host a static website

2. Connect your services together

1. Choose a messaging model in Azure to loosely connect your services

What is a Message?

In the terminology of distributed applications, messages have the following
characteristics:

e A message contains raw data, produced by one component, that will be
consumed by another component.

« A message contains the data itself, not just a reference to that data.

e The sending component expects the message content to be processed in a
certain way by the destination component. The integrity of the overall system
may depend on both sender and receiver doing a specific job.

What is an Event?

Events are lighter weight than messages, and are most often used for broadcast
communications. The components sending the event are known as publishers, and
receivers are known as subscribers.

With events, receiving components will generally decide in which communications
they are interested, and will "subscribe" to those events. The subscription is managed
by an intermediary, like Azure Event Grid or Azure Event Hubs. When publishers send
an event, the intermediary will route that event to interested subscribers. This pattern
is known as a "publish-subscribe architecture.” It's not the only way to deal with
events, but it is the most common.

Events have the following characteristics:

e Aneventis a lightweight notification that indicates that something happened.
e The event may be sent to multi**ple receivers, or to none at all.

o Events are often intended to "fan out," or have a large number of subscribers
for each publisher.

o The publisher of the event has no expectation about the action a receiving
component takes.

e« Some events are discrete units and unrelated to other events.
o Some events are part of a related and ordered series.

pg. 21

https://docs.microsoft.com/en-gb/learn/modules/automatic-update-of-a-webapp-using-azure-functions-and-signalr/7-exercise-host-a-static-website-using-a-storage-account

SKILLCERTPRO

How to choose messages or events?

Events are more likely to be used for broadcasts and are often ephemeral, meaning a
communication might not be handled by any receiver if none is currently
subscribing. Messages are more likely to be used where the distributed application
requires a guarantee that the communication will be processed.

For each communication, consider the following question: Does the sending
component expect the communication to be processed in a particular way by
the destination component?

If the answer is yes, choose to use a message. If the answer is no, you may be able to
use events.

Azure offers two solution to message-based approach, Azure Queue
Storage & Azure Service Bus

Azure Queue Storage - Queue storage is a service that uses Azure Storage to store
large numbers of messages that can be securely accessed from anywhere in the
world using a simple REST-based interface. Queues can contain millions of messages,
limited only by the capacity of the storage account that owns it.

Azure Service Bus Queues - Service Bus is a message broker system intended for
enterprise applications. These apps often utilize multiple communication protocols,
have different data contracts, higher security requirements, and can include both
cloud and on-premises services. Service Bus is built on top of a dedicated messaging
infrastructure designed for exactly these scenarios.

Azure Service Bus Topics - Azure Service Bus topics are like queues, but can have
multiple subscribers. When a message is sent to a topic instead of a queue multiple
components can be triggered to do their work. Internally, topics use queues. When
you post to a topic, the message is copied and dropped into the queue for each
subscription. The queue means that the message copy will stay around to be
processed by each subscription branch even if the component processing that
subscription is too busy to keep up.

Benefits of Queue
Queue infrastructures can support many advanced features that make them very
useful in the following ways:

e Increased reliability
Queues are used by distributed applications as a temporary storage location
for messages pending delivery to a destination component. The source
component can add a message to the queue and destination components can

pg. 22

SKILLCERTPRO

retrieve the message at the front of the queue for processing. Queues increase
the reliability of the message exchange because, at times of high demand,
messages can simply wait until a destination component is ready to process
them.

e Message delivery guarantees
Queuing systems usually guarantee delivery of each message in the queue to
a destination component. However, these guarantees can take different
approaches:

o At-Least-Once Delivery - In this approach, each message is guaranteed
to be delivered to at least one of the components that retrieve
messages from the queue.

Note - In certain circumstances, it is possible that the same message
may be delivered more than once. For example, if there are two
instances of a web app retrieving messages from a queue, ordinarily
each message goes to only one of those instances. However, if one
instance takes a long time to process the message, and a time-out
expires, the message may be sent to the other instance as well. Your
web app code should be designed with this possibility in mind.

o At-Most-Once Delivery - In this approach, each message is not
guaranteed to be delivered, and there is a very small chance that it may
not arrive. However, unlike At-Least-Once delivery, there is no chance
that the message will be delivered twice.

o First-In-First-Out (FIFO) - In most messaging systems, messages usually
leave the queue in the same order in which they were added, but you
should consider whether this order is guaranteed. If your distributed
application requires that messages are processed in precisely the
correct order, you must choose a queue system that includes a FIFO
guarantee.

« Transaction support
Some closely related groups of messages may cause problems when delivery
fails for one message in the group.
For example, consider an e-commerce application. When the user clicks the
Buy button, a series of messages might be generated and sent off to various
processing destinations:

o A message with the order details is sent to a fulfillment center

o A message with the total and payment details is sent to a credit card
processor.

pg. 23

SKILLCERTPRO

o A message with the receipt information is sent to a database to
generate an invoice for the customer

In this case, we want to make sure all messages get processed, or none of them are
processed. We won't be in business long if the credit card message is not delivered,
and all our orders are fulfilled without payment! You can avoid these kinds of
problems by grouping the two messages into a transaction. Message transactions
succeed or fail as a single unit - just like in the database world.

Choose Service Bus Topics if

« you need multiple receivers to handle each message

Choose Service Bus queues if

e You need an At-Most-Once delivery guarantee.

e You need a FIFO guarantee.

e You need to group messages into transactions.

e You want to receive messages without polling the queue.

e You need to provide a role-based access model to the queues.

e You need to handle messages larger than 64 KB but less than 256 KB.

e Your queue size will not grow larger than 80 GB.

e You would like to be able to publish and consume batches of messages.

Choose Queue storage if

e You need an audit trail of all messages that pass through the queue.

e You expect the queue to exceed 80 GB in size.

e You need to handle messages less than 64 KB.

e You want to track progress for processing a message inside of the queue.

What is Azure Event Grid?

Azure Event Grid is a fully-managed event routing service running on top of Azure
Service Fabric. Event Grid distributes events from different sources, such as Azure
Blob storage accounts or Azure Media Services, to different handlers, such as Azure

pg. 24

SKILLCERTPRO

Functions or Webhooks. Event Grid was created to make it easier to build event-
based and serverless applications on Azure.

Event Grid supports most Azure services as a publisher or subscriber and can be used
with third-party services. It provides a dynamically scalable, low-cost, messaging
system that allows publishers to notify subscribers about a status change. The
following illustration shows Azure Event Grid receiving messages from multiple
sources and distributing them to event handlers based on subscription.

There are several concepts in Azure Event Grid that connect a source to a subscriber:

« Events: What happened.
« Event sources: Where the event took place.
e Topics: The endpoint where publishers send events.

e Event subscriptions: The endpoint or built-in mechanism to route events,
sometimes to multiple handlers. Subscriptions are also used by handlers to
filter incoming events intelligently.

« Event handlers: The app or service reacting to the event.

The following illustration shows an Azure Event Grid positioned between multiple
event sources and multiple event handlers. The event sources send events to the
Event Grid and the Event Grid forwards relevant events to the subscribers. Event Grid
use topics to decide which events to send to which handlers. Events sources tag each
event with one or more topics, and event handlers subscribe to the topics they are
interested in.

What is an event?

Events are the data messages passing through Event Grid that describe what has
taken place. Each event is self-contained, can be up to 64 KB, and contains several
pieces of information based on a schema defined by Event Grid:

[
{
"topic": string,
"subject": string,
"id": string,
"eventType": string,
"eventTime": string,
"data":{
object-unique-to-each-publisher
¥
"dataVersion": string,
"metadataVersion": string

pg. 25

SKILLCERTPRO

Field Description

The full resource path to the event source. Event Grid

topic provides this value.
subject Publisher-defined path to the event subject.
id The unique identifier for event.

One of the registered event types for this event source. This
eventType is a value you can create filters against, e.g.
CustomerCreated, BlobDeleted, HttpRequestReceived, etc.

The time the event was generated based on the provider's

tTi)
eventiime UTC time.

Specific information that is relevant to the type of event. For
example, an event about a new file being created in Azure

data Storage has details about the file, such as the
lastTimeModified value. Or, an Event Hubs event has the URL
of the Capture file. This field is optional.

The schema version of the data object. The publisher defines

dataVersion i
the schema version.

The schema version of the event metadata. Event Grid
metadataVersion defines the schema of the top-level properties. Event Grid
provides this value.

What is an event source?

Event sources are responsible for sending events to Event Grid. Each event source is
related to one or more event types. For example, Azure Storage is the event source
for blob created events. IoT Hub is the event source for device created events. Your
application is the event source for custom events that you define.

Types of event sources Events can be generated by the following Azure resource
types:

e Azure Subscriptions and Resource Groups: Subscriptions and resource
groups generate events related to management operations in Azure. For

pg. 26

SKILLCERTPRO

example, when a user creates a virtual machine, this source generates an
event.

« Container registry: The Azure Container Registry service generates events
when images in the registry are added, removed, or changed.

o Event Hub: Event Hub can be used to process and store events from a variety
of data sources - typically logging or telemetry related. Event Hub can
generate events to Event Grid when files are captured.

o Service Bus: Service bus can generate events to Event Grid when there are
active messages with no active listeners.

« Storage accounts: Storage accounts can generate events when users add
blobs, files, table entries, or queue messages. You can use both blob accounts
and General-purpose V2 accounts as event sources.

« Media Services: Media Services hosts video and audio media and provides
advanced management features for media files. Media Services can generate
events when an encoding job is started or completed on a video file.

e Azure loT Hub: loT Hub communicates with and gathers telemetry from loT
devices. It can generate events whenever such communications arrive.

o Custom events: Custom events can be generated using the REST API, or with
the Azure SDK on Java, GO, .NET, Node, Python, and Ruby. For example, you
could create a custom event in the Web Apps feature of Azure App Service.
This can happen in the worker role when it picks up a message from a storage
queue.

What is an event topic?

Event topics categorize events into groups. Topics are represented by a public
endpoint and are where the event source sends events to. When designing your
application, you can decide how many topics to create. Larger solutions will create a
custom topic for each category of related events, while smaller solutions might send
all events to a single topic.

Topics are divided into system topics, and custom topics.

« System topics are built-in topics provided by Azure services. You don't see
system topics in your Azure subscription because the publisher owns the
topics, but you can subscribe to them. To subscribe, you provide information
about the resource you want to receive events from. As long as you have
access to the resource, you can subscribe to its events.

o Custom topics are application and third-party topics. When you create or are
assigned access to a custom topic, you see that custom topic in your
subscription.

pg. 27

SKILLCERTPRO

What is an event subscription?

Event Subscriptions define which events on a topic an event handler wants to receive.
A subscription can also filter events by their type or subject, so you can ensure an
event handler only receives relevant events.

What is an event handler?

An event handler (sometimes referred to as an event "subscriber") is any component
(application or resource) that can receive events from Event Grid. For example, Azure
Functions can execute code in response to the new song being added to the Blob
storage account. Subscribers can decide which events they want to handle and Event
Grid will efficiently notify each interested subscriber when a new event is available -
no polling required.

Types of event handlers The following object types in Azure can receive and handle
events from Event Grid:

o Azure Functions: Custom code that runs in Azure, without the need for
explicit configuration of a host virtual server or container. Use an Azure
function as an event handler when you want to code a custom response to the
event.

« Webhooks: A webhook is a web API that implements a push architecture.
o Azure Logic Apps: An Azure logic app hosts a business process as a workflow.

e Microsoft Flow: Flow also hosts workflows, but it is easier for non-technical
staff to use.

Should you use Event Grid? Use Event Grid when you need these features:

o Simplicity: It is straightforward to connect sources to subscribers in Event
Grid.

« Advanced filtering: Subscriptions have close control over the events they
receive from a topic.

e Fan-out: You can subscribe to an unlimited number of endpoints to the same
events and topics.

« Reliability: Event Grid retries event delivery for up to 24 hours for each
subscription.

o Pay-per-event: Pay only for the number of events that you transmit.

Event Grid is a simple but versatile event distribution system. Use it to deliver discrete
events to subscribers, which will receive those events reliably and quickly. We have
one more messaging model to examine - what if we want to deliver a large stream of
events? In this scenario, Event Grid isn't a great solution because it's designed for
one-event-at-a-time delivery. Instead, we need to turn to another Azure service:
Event Hubs.

pg. 28

SKILLCERTPRO

2. Implement message-based communication workflows with Azure Service Bus

Creating a Queue in Service Bus

« Message time to live - Message time to live determines how long a message
will stay in the queue before it expires and is removed or dead lettered. When
sending messages it is possible to specify a different time to live for only that
message. This default will be used for all messages in the queue which do not
specify a time to live for themselves.

e Locked duration - Sets the amount of time that a message is locked for other
receivers. After its lock expires, a message pulled by one receiver becomes
available to be pulled by other receivers. Defaults to 30 seconds, with a
maximum of 5 minutes.

o Enable duplicate detection - Enabling duplicate detection configures your
queue to keep a history of all messages sent to the queue for a configurable
amount of time. During that interval, your queue will not accept any duplicate
messages. Enabling this property guarantees exactly-once delivery over a
user-defined span of time.

« Enable dead lettering on message expiration - Dead lettering messages
involves holding messages that cannot be successfully delivered to any
receiver to a separate queue after they have expired. Messages do not expire
in the dead letter queue, and it supports peek-lock delivery and all
transactional operations.

« Enable sessions - Service bus sessions allow ordered handling of unbounded
sequences of related messages. With sessions enabled a queue can guarantee
first-in-first-out delivery of messages. Enable partitioning - Partitions a
queue across multiple message brokers and message stores. Disconnects the
overall throughput of a partitioned entity from any single message broker or
messaging store. This property is not modifiable after a queue has been
created.

Exercise - Implement a Service Bus topic and queue

Code with topics vs. code with queues

If you want every message sent to be delivered to all subscribing components, you'll
use topics. Writing code that uses topics is a way to replace queues. You will use the
same Microsoft.Azure.ServiceBus NuGet package, configure connection strings, and
use asynchronous programming patterns.

However, you'll use the TopicClient class instead of the QueueClient class to send
messages and the SubscriptionClient class to receive messages.

pg. 29

https://docs.microsoft.com/en-gb/learn/modules/implement-message-workflows-with-service-bus/3-exercise-implement-a-service-bus-topic-and-queue

SKILLCERTPRO

Exercise - Write code that uses Service Bus queues

Setting filters on subscriptions
If you want to control that specific messages sent to the topic are delivered to
particular subscriptions, you can place filters on each subscription in the topic.
Filters can be one of three types:

e Boolean Filters - The TrueFilter ensures that all messages sent to the topic are
delivered to the current subscription. The FalseFilter ensures that none of the
messages are delivered to the current subscription. (This effectively blocks or
switches off the subscription.)

e SQL Filters A SQL filter specifies a condition by using the same syntax as
a WHERE clause in a SQL query. Only messages that return True when
evaluated against this subscription will be delivered to the subscribers.

« Correlation Filters A correlation filter holds a set of conditions that are
matched against the properties of each message. If the property in the filter
and the property on the message have the same value, it is considered a
match.

Exercise - Write code that uses Service Bus topics

3. Communicate between applications with Azure Queue storage
Exercise - Create a storage account

Access authorization

Every request to a queue must be authorized and there are several options to choose
from. |Authorization Type|Description| |[Azure Active Directory|You can use role-based
authentication and identify specific clients based on AAD credentials.| |[Shared
Key|Sometimes referred to as an account key, this is an encrypted key signature
associated with the storage account. Every storage account has two of these keys
that can be passed with each request to authenticate access. Using this approach is
like using a root password - it provides full access to the storage account.| |Shared
access signature|A shared access signature (SAS) is a generated URI that grants
limited access to objects in your storage account to clients. You can restrict access to
specific resources, permissions, and scope to a data range to automatically turn off
access after a period of time.|

Exercise - Identify a queue

Programatically accessing a queue

pg. 30

https://docs.microsoft.com/en-gb/learn/modules/implement-message-workflows-with-service-bus/5-exercise-write-code-that-uses-service-bus-queues
https://docs.microsoft.com/en-gb/learn/modules/implement-message-workflows-with-service-bus/7-exercise-write-code-that-uses-service-bus-topics
https://docs.microsoft.com/en-gb/learn/modules/communicate-between-apps-with-azure-queue-storage/3-exercise-create-the-azure-storage-infrastructure
https://docs.microsoft.com/en-gb/learn/modules/communicate-between-apps-with-azure-queue-storage/5-exercise-identify-a-queue

SKILLCERTPRO

Notice that get and delete are separate operations. This arrangement handles
potential failures in the receiver and implements a concept called at-least-once
delivery. After the receiver gets a message, that message remains in the queue but is
invisible for 30 seconds. If the receiver crashes or experiences a power failure during
processing, then it will never delete the message from the queue. After 30 seconds,
the message will reappear in the queue and another instance of the receiver can
process it to completion.

The Azure Storage Client Library for .NET
The Azure Storage Client Library for .NET provides types to represent each of the
objects you need to interact with:

« CloudStorageAccount represents your Azure storage account.
e CloudQueueClient represents Azure Queue storage.

o CloudQueue represents one of your queue instances.

e CloudQueueMessage represents a message.

Exercise - Add a message to the queue

Exercise - Retrieve a message from the queue

4. Enable reliable messaging for Big Data applications using Azure Event Hubs

Consumer groups

An Event Hub consumer group represents a specific view of an Event Hub data
stream. By using separate consumer groups, multiple subscriber applications can
process an event stream independently, and without affecting other applications.
However, the use of many consumer groups isn't a requirement, and for many
applications, the single default consumer group is sufficient.

Pricing

There are three pricing tiers for Azure Event Hubs: Basic, Standard, and Dedicated.
The tiers differ in terms of supported connections, the number of available Consumer
groups, and throughput. When using Azure CLI to create an Event Hubs namespace,
if you don't specify a pricing tier, the default of Standard (20 Consumer groups, 1000
Brokered connections) is assigned.

Defining an Event Hubs namespace

An Event Hubs namespace is a containing entity for managing one or more Event
Hubs. Creating an Event Hubs namespace typically involves the following
configuration:

pg. 31

https://docs.microsoft.com/en-gb/learn/modules/communicate-between-apps-with-azure-queue-storage/7-exercise-implement-enqueue
https://docs.microsoft.com/en-gb/learn/modules/communicate-between-apps-with-azure-queue-storage/8-exercise-implement-dequeue

SKILLCERTPRO

o Define namespace-level settings. Certain settings such as namespace capacity
(configured using throughput units), pricing tier, and performance metrics are
defined at the namespace level. These settings are applicable for all the Event
Hubs within that namespace. If you don't define these settings, a default value
is used: 1 for capacity and Standard for pricing tier.

Keep the following aspects in mind:
o You can't change the throughput unit once you set it.

o You must balance your configuration against your Azure budget
expectations.

o You might consider configuring different Event Hubs for different
throughput requirements. For example, if you have a sales data
application and you're planning for two Event Hubs, it would make
sense to use a separate namespace for each hub.

You'll configure one namespace for high throughput collection of real-
time sales data telemetry and one namespace for infrequent event log
collection. This way, you only need to configure (and pay for) high
throughput capacity on the telemetry hub.

e Select a unique name for the namespace. The namespace is accessible
through this URL: namespace.servicebus.windows.net

« Defining the following optional properties:
o Enable Kafka. This option enables Kafka applications to publish events
to the Event Hub.

o Make this namespace zone redundant. Zone-redundancy replicates
data across separate data centers with their independent power,
networking, and cooling infrastructures.

o Enable Auto-Inflate and Auto-Inflate Maximum Throughput Units.
Auto-Inflate provides an automatic scale-up option by increasing the
number of throughput units up to a maximum value. This option is
useful to avoid throttling in situations when incoming or outgoing data
rates exceed the currently set number of throughput units.

Configuring a new Event Hub

After you create the Event Hubs namespace, you can create an Event Hub. When
creating a new Event Hub, there are several mandatory parameters.

The following parameters are required to create an Event Hub:

e Event Hub name - Event Hub name that is unique within your subscription
and:
o Is between 1 and 50 characters long

o Contains only letters, numbers, periods, hyphens, and underscores
o Starts and ends with a letter or number

pg. 32

SKILLCERTPRO

o Partition Count - The number of partitions required in an Event Hub
(between 2 and 32). The partition count should be directly related to the
expected number of concurrent consumers and can't be changed after the
hub has been created. The partition separates the message stream so that
consumer or receiver applications only need to read a specific subset of the
data stream. If not defined, this value defaults to 4.

e Message Retention - The number of days (between 1 and 7) that messages
will remain available if the data stream needs to be replayed for any reason. If
not defined, this value defaults to 7.

You can also optionally configure an Event Hub to stream data to an Azure
Blob storage or Azure Data Lake Store account.

Exercise - Use the Azure CLI to Create an Event Hub

Exercise - Configure applications to send or receive messages through an Event
Hub

Exercise - Evaluate the performance of the deployed Event Hub using the Azure
portal

Applications that publish messages to Azure Event Hub very frequently will get the best
performance using Advanced Message Queuing Protocol (AMQP) because it establishes
a persistent socket.

3. Work with relational data in Azure

1. Provision an Azure SQL database to store application data
Why choose Azure SQL Database?

o Convenience
Setting up SQL Server on a VM or on physical hardware requires you to know
about hardware and software requirements. You'll need to understand the
latest security best practices and manage operating system and SQL Server
patches on a routine basis. You also need to manage backup and data
retention issues yourself.
With Azure SQL Database, we manage the hardware, software updates, and
OS patches for you. All you specify is the name of your database and a few
options. You'll have a running SQL database in minutes.

o Cost
Because we manage things for you, there are no systems for you to buy,

pg. 33

https://docs.microsoft.com/en-gb/learn/modules/enable-reliable-messaging-for-big-data-apps-using-event-hubs/3-exercise-create-an-event-hub-using-azure-cli
https://docs.microsoft.com/en-gb/learn/modules/enable-reliable-messaging-for-big-data-apps-using-event-hubs/5-exercise-configure-applications-to-send-or-receive-messages-through-an-event-hub
https://docs.microsoft.com/en-gb/learn/modules/enable-reliable-messaging-for-big-data-apps-using-event-hubs/5-exercise-configure-applications-to-send-or-receive-messages-through-an-event-hub
https://docs.microsoft.com/en-gb/learn/modules/enable-reliable-messaging-for-big-data-apps-using-event-hubs/7-exercise-evaluate-the-performance-of-the-deployed-event-hub-using-the-azure-portal
https://docs.microsoft.com/en-gb/learn/modules/enable-reliable-messaging-for-big-data-apps-using-event-hubs/7-exercise-evaluate-the-performance-of-the-deployed-event-hub-using-the-azure-portal

SKILLCERTPRO

provide power for, or otherwise maintain.

Azure SQL Database has several pricing options. These pricing options enable
you to balance performance versus cost. You can start for just a few dollars a
month.

Scale
With Azure SQL Database, you can adjust the performance and size of your
database on the fly when your needs change.

Security Azure SQL Database comes with a firewall that's automatically
configured to restrict connections from the Internet.

You can allow access to specific IP addresses that you trust. Doing so allows
you to use Visual Studio, SQL Server Management Studio, or other tools to
manage your Azure SQL database.

Azure SQL logical server

When you create your first Azure SQL database, you also create an Azure SQL logical
server. Think of a logical server as an administrative container for your databases.
You can control logins, firewall rules, and security policies through the logical server.
You can also override these policies on each database within the logical server.

Azure SQL Database has two purchasing models:

DTU

DTU stands for Database Transaction Unit, and is a combined measure of
compute, storage, and 10 resources. Think of the DTU model as a simple,
preconfigured purchase option.

Because your logical server can hold more than one database, there's also the
idea of eDTUs, or elastic Database Transaction Units. This option enables you
to choose one price, but allow each database in the pool to consume fewer or
greater resources depending on current load.

vCore

vCores are Virtual cores, which give you greater control over the compute and
storage resources that you create and pay for.

While the DTU model provides fixed combinations of compute, storage, and
|0 resources, the vCore model enables you to configure resources
independently. For example, with the vCore model you can increase storage
capacity but keep the existing amount of compute and 10 throughput.

What are SQL elastic pools?

When you create your Azure SQL database, you can create a SQL elastic pool.

SQL elastic pools relate to eDTUs. They enable you to buy a set of compute and
storage resources that are shared among all the databases in the pool. Each database

pg. 34

SKILLCERTPRO

can use the resources they need, within the limits you set, depending on current
load.

What is collation?

Collation refers to the rules that sort and compare data. Collation helps you define
sorting rules when case sensitivity, accent marks, and other language characteristics
are important.

Let's take a moment to consider what the default collation,
SQL_Latin1_General_CP1_CI_AS, means.

o Latin1_General refers to the family of Western European languages.

e CP1 refers to code page 1252, a popular character encoding of the Latin
alphabet.

e Cl means that comparisons are case insensitive. For example, "HELLO"
compares equally to "hello".

e AS means that comparisons are accent sensitive. For example, "résumeé"
doesn't compare equally to "resume".

2. Create an Azure Database for PostgreSQL server

What is an Azure Database for PostgreSQL server?

The PostgreSQL server is a central administration point for one or more databases.
The PostgreSQL service in Azure is a managed resource that provides performance
guarantees, and provides access and features at the server level.

An Azure Database for PostgreSQL server is the parent resource for a database. A
resource is a manageable item that's available through Azure. Creating this resource
allows you to configure your server instance.

Pricing tiers
Azure Database for PostgreSQL provides you with the option to choose pricing tiers
based on parameters like compute power and storage.

Exercise - Create an Azure Database for PostgreSQL server via the Azure CLI

Exercise - Connect to an Azure Database for PostgreSQL server

3. Scale multiple Azure SQL Databases with SQL elastic pools

How many databases to add to a pool?
The general guidance is, if the combined resources you would need for individual

pg. 35

https://docs.microsoft.com/en-us/learn/modules/create-azure-db-for-postgresql-server/5-create-postgresql-db-server-via-azure-cli
https://docs.microsoft.com/en-us/learn/modules/create-azure-db-for-postgresql-server/7-connecting-to-postgresql-db-server

SKILLCERTPRO

databases to meet capacity spikes is more than 1.5 times the capacity required for
the elastic pool, then the pool will be cost effective.

At a minimum, it is recommended to add at least two S3 databases or fifteen SO
databases to a single pool for it to have potential cost savings.

Depending on the performance tier, you can add up to 100 or 500 databases to a
single pool.

Exercise - Create a SQL elastic pool

DTUs vs vCore pricing model

DTU model vCore model
Simple. Preconfigured Independent scalability
& . rs N
| —— gl &
el P D OR M ¢ ; M -
o ‘_..-—"’ H H : o ¥
Storage - Storage i’
Database Transaction Unit vCore-based model
(DTU)-based model « Independent scaling of compute, storage
- Bundled measure of compute, storage and and 10 resources
e = Best for customers who value flexibility, control
« Best for customers who want simple, and transparency
pre-configured resource options « Use with Azure Hybrid Benefit for SQL Server

to gain cost savings

Exercise - Manage SQL elastic pools

4. Secure your Azure SQL Database

Firewall rules

Azure SQL Database has a built-in firewall that is used to allow and deny network
access to both the database server itself, as well as individual databases. Initially, all
public access to your Azure SQL Database is blocked by the SQL Database firewall.
Firewall rules are configured at the server and/or database level, and will specifically
state which network resources are allowed to establish a connection to the database.
Depending on the level, the rules you can apply will be as follows:

o Server-level firewall rules
o Allow access to Azure services - allows services within Azure to connect
to your Azure SQL Database. When enabled, this setting allows
communications from all Azure public IP addresses. This includes all
Azure Platform as a Service (PaaS) services, such as Azure App Service

pg. 36

https://docs.microsoft.com/en-us/learn/modules/scale-sql-databases-elastic-pools/3-exercise-create-elastic-pool
https://docs.microsoft.com/en-us/learn/modules/scale-sql-databases-elastic-pools/5-exercise-manage-elastic-pools

SKILLCERTPRO

and Azure Container Service, as well as Azure VMs that have outbound
Internet access. This rule can be configured through the ON/OFF
option in the firewall pane in the portal, or by an IP rule that has 0.0.0.0
as the start and end IP addresses.

This rule is used when you have applications running on PaaS services
in Azure, such as Azure Logic Apps or Azure Functions, that need to
access your Azure SQL Database. Many of these services don't have a
static IP address, so this rule is needed to ensure they are able to
connect to the database.

IP address rules - are rules that are based on specific public IP address
ranges. IP addresses connecting from an allowed public IP range will be
permitted to connect to the database.

Virtual network rules - allow you to explicitly allow connection from
specified subnets inside one or more Azure virtual networks (VNets).
Virtual network rules can provide greater access control to your
databases and can be a preferred option depending on your scenario.
Since Azure VNet address spaces are private, you can effectively
eliminate exposure to public IP addresses and secure connectivity to
those addresses you control.

o Database-level firewall rules

o

IP address rules - These rules allow access to an individual database on
a logical server and are stored in the database itself. For database-level
rules, only IP address rules can be configured. They function the same
as when applied at the server-level, but are scoped to the database
only.

The benefits of database-level rules are their portability. When
replicating a database to another server, the database-level rules will be
replicated, since they are stored in the database itself.

The downside to database-level rules is that you can only use IP
address rules. This may limit the flexibility you have and can increase
administrative overhead.

Exercise - Restrict network access

TLS network encryption

Azure SQL Database enforces Transport Layer Security (TLS) encryption at all times
for all connections, which ensures all data is encrypted "in transit" between the
database and the client.

pg. 37

https://docs.microsoft.com/en-gb/learn/modules/secure-your-azure-sql-database/2-restrict-network-access

SKILLCERTPRO

Transparent data encryption

Azure SQL Database protects your data at rest using transparent data encryption
(TDE). TDE performs real-time encryption and decryption of the database, associated
backups, and transaction log files at rest without requiring changes to the
application. Using a database encryption key, transparent data encryption performs
real-time 1/O encryption and decryption of the data at the page level. Each page is
decrypted when it's read into memory and then encrypted before being written to
disk.

By default, TDE is enabled for all newly deployed Azure SQL databases. It's important
to check that data encryption hasn't been turned off, and older Azure SQL Server
databases may not have TDE enabled.

Dynamic data masking

Dynamic data masking is a policy-based security feature that hides the sensitive data
in the result set of a query over designated database fields, while the data in the
database is not changed.

Data masking rules consist of the column to apply the mask to, and how the data
should be masked. You can create your own masking format, or use one of the
standard masks such as:

Default value, which displays the default value for that data type instead.

o Credit card value, which only shows the last four digits of the number,
converting all other numbers to lower case x's.

e Email, which hides the domain name and all but the first character of the email
account name.

o Number, which specifies a random number between a range of values. For
example, on the credit card expiry month and year, you could select random
months from 1 to 12 and set the year range from 2018 to 3000.

e Custom string, which allows you to set the number of characters exposed from
the start of the data, the number of characters exposed from the end of the
data, and the characters to repeat for the remainder of the data.

When querying the columns, database administrators will still see the original values,
but non-administrators will see the masked values. You can allow other users to see
the non-masked versions by adding them to the SQL users excluded from masking
list.

Exercise - Secure your data in transit, at rest, and on display

Azure SQL Database auditing

By enabling auditing, operations that occur on the database are stored for later
inspection or to have automated tools analyze them. Auditing is also used for
compliance management or understanding how your database is used. Auditing is

pg. 38

https://docs.microsoft.com/en-gb/learn/modules/secure-your-azure-sql-database/4-data-security

SKILLCERTPRO

also required if you wish to use Azure threat detection on your Azure SQL database.
You can use SQL database auditing to:

o Retain an audit trail of selected events. You can define categories of database
actions to be audited.

e Report on database activity. You can use pre-configured reports and a
dashboard to get started quickly with activity and event reporting.

e Analyze reports. You can find suspicious events, unusual activity, and trends.

e Audit logs are written to Append Blobs in an Azure Blob storage account that
you designate. Audit policies can be applied at the server-level or database-
level. Once enabled, you can use the Azure portal to view the logs, or send
them to Log Analytics or Event Hub for further processing and analysis.

Auditing in practice
As a best practice, avoid enabling both server blob auditing and database blob
auditing together, unless:

« You want to use a different storage account or retention period for a specific
database.

e You want to audit event types or categories for a specific database that differs
from the rest of the databases on the server. For example, you might have
table inserts that need to be audited but only for a specific database.

Otherwise, it's recommended you enable only server-level blob auditing and leave
the database-level auditing disabled for all databases.

Advanced Data Security for Azure SQL Database

Advanced Data Security (ADS) provides a set of advanced SQL security capabilities,
including data discovery & classification, vulnerability assessment, and Advanced
Threat Protection.

« Data discovery & classification (currently in preview) provides capabilities
built into Azure SQL Database for discovering, classifying, labeling &
protecting the sensitive data in your databases. It can be used to provide
visibility into your database classification state, and to track the access to
sensitive data within the database and beyond its borders.

o Vulnerability assessment is an easy to configure service that can discover,
track, and help you remediate potential database vulnerabilities. It provides
visibility into your security state, and includes actionable steps to resolve
security issues, and enhance your database fortifications.

pg. 39

SKILLCERTPRO

o Advanced Threat Protection detects anomalous activities indicating unusual
and potentially harmful attempts to access or exploit your database. It
continuously monitors your database for suspicious activities, and provides
immediate security alerts on potential vulnerabilities, SQL injection attacks,
and anomalous database access patterns. Advanced Threat Protection alerts
provide details of the suspicious activity and recommend action on how to
investigate and mitigate the threat.

Exercise - Monitor your database

5. Develop and configure an ASP.NET application that queries an Azure SQL
database

Exercise - Create tables, bulk import, and query data

Exercise - Connect an ASP.NET application to Azure SQL Database

4. Store data in Azure

1. Choose a data storage approach in Azure

Structured data

Structured data, sometimes referred to as relational data, is data that adheres to a
strict schema, so all of the data has the same fields or properties. The shared schema
allows this type of data to be easily searched with query languages such as SQL
(Structured Query Language). This capability makes this data style perfect for
applications such as CRM systems, reservations, and inventory management.
Structured data is straightforward in that it's easy to enter, query, and analyze. All of
the data follows the same format. However, forcing a consistent structure also means
evolution of the data is more difficult as each record has to be updated to conform
to the new structure.

Semi-structured data

Semi-structured data is less organized than structured data, and is not stored in a
relational format, as the fields do not neatly fit into tables, rows, and columns. Semi-
structured data contains tags that make the organization and hierarchy of the data
apparent - for example, key/value pairs. Semi-structured data is also referred to as
non-relational or NoSQL data. The expression and structure of the data in this style is
defined by a serialization language.

pg. 40

https://docs.microsoft.com/en-gb/learn/modules/secure-your-azure-sql-database/5-monitor-your-database
https://docs.microsoft.com/en-us/learn/modules/develop-app-that-queries-azure-sql/3-exercise-create-tables-bulk-import-query-data
https://docs.microsoft.com/en-us/learn/modules/develop-app-that-queries-azure-sql/5-exercise-connect-aspnet-to-azure-sql

SKILLCERTPRO

e XML, or extensible markup language, was one of the first data languages to
receive widespread support. It's text-based, which makes it easily human and
machine-readable. In addition, parsers for it can be found for almost all
popular development platforms. XML allows you to express relationships and
has standards for schema, transformation, and even displaying on the web.

e JSON - or JavaScript Object Notation, has a lightweight specification and
relies on curly braces to indicate data structure. Compared to XML, it is less
verbose and easier to read by humans. JSON is frequently used by web
services to return data.

« YAML - or YAML Ain't Markup Language, is a relatively new data language
that's growing quickly in popularity in part due to its human-friendliness. The
data structure is defined by line separation and indentation, and reduces the
dependency on structural characters like parentheses, commas and brackets.

Unstructured data

The organization of unstructured data is ambiguous. Unstructured data is often
delivered in files, such as photos or videos. The video file itself may have an overall
structure and come with semi-structured metadata, but the data that comprises the
video itself is unstructured. Therefore, photos, videos, and other similar files are
classified as unstructured data.

What is a transaction?

A transaction is a logical group of database operations that execute together.
Transactions are often defined by a set of four requirements, referred to as ACID
guarantees. ACID stands for Atomicity, Consistency, Isolation, and Durability:

« Atomicity means a transaction must execute exactly once and must be
atomic; either all of the work is done, or none of it is. Operations within a
transaction usually share a common intent and are interdependent.

« Consistency ensures that the data is consistent both before and after the
transaction.

« Isolation ensures that one transaction is not impacted by another transaction.

o Durability means that the changes made due to the transaction are
permanently saved in the system. Committed data is saved by the system so
that even in the event of a failure and system restart, the data is available in its
correct state.

OLTP vs OLAP

Transactional databases are often called OLTP (Online Transaction Processing)
systems. OLTP systems commonly support lots of users, have quick response times,
and handle large volumes of data. They are also highly available (meaning they have
very minimal downtime), and typically handle small or relatively simple transactions.
On the contrary, OLAP (Online Analytical Processing) systems commonly support

pg. 41

SKILLCERTPRO

fewer users, have longer response times, can be less available, and typically handle
large and complex transactions.

Good to read - Choose a storage solution on Azure

2. Create an Azure Storage account

What is a storage account?

A storage account is a container that groups a set of Azure Storage services together.
Only data services from Azure Storage can be included in a storage account (Azure
Blobs, Azure Files, Azure Queues, and Azure Tables).

Storage account settings

« Name: Each storage account has a name. The name must be globally unique
within Azure, use only lowercase letters and digits and be between 3 and 24
characters.

e Subscription: The Azure subscription that will be billed for the services in the
account.

e Location: The datacenter that will store the services in the account.

o Performance: Determines the data services you can have in your storage
account and the type of hardware disks used to store the data. Standard
allows you to have any data service (Blob, File, Queue, Table) and uses
magnetic disk drives. Premium allows you to create premium page blob in all
regions, and block blob accounts in supported regions. These storage
accounts use solid-state drives (SSD) for storage.

e Replication: Determines the strategy used to make copies of your data to
protect against hardware failure or natural disaster. At a minimum, Azure will
automatically maintain a copy of your data within the data center associated
with the storage account. This is called locally-redundant storage (LRS), and
guards against hardware failure but does not protect you from an event that
incapacitates the entire datacenter. You can upgrade to one of the other
options such as geo-redundant storage (GRS) to get replication at different
datacenters across the world.

o Access tier: Controls how quickly you will be able to access the blobs in this
storage account. Hot gives quicker access than Cool, but at increased cost.
This applies only to blobs, and serves as the default value for new blobs.

o Secure transfer required: A security feature that determines the supported
protocols for access. Enabled requires HTTPs, while disabled allows HTTP.

o Virtual networks: A security feature that allows inbound access requests only
from the virtual network(s) you specify.

pg. 42

https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/5-choose-the-right-azure-service-for-your-data

SKILLCERTPRO

The number of storage accounts you need is typically determined by your data
diversity, cost sensitivity, and tolerance for management overhead.

« Data diversity - Organizations often generate data that differs in where it is
consumed, how sensitive it is, which group pays the bills, etc. Diversity along
any of these vectors can lead to multiple storage accounts. Let's consider two
examples:

o Do you have data that is specific to a country or region? If so, you
might want to locate it in a data center in that country for performance
or compliance reasons. You will need one storage account for each
location.

o Do you have some data that is proprietary and some for public
consumption? If so, you could enable virtual networks for the
proprietary data and not for the public data. This will also require
separate storage accounts. In general, increased diversity means an
increased number of storage accounts.

« Cost sensitivity - A storage account by itself has no financial cost; however,
the settings you choose for the account do influence the cost of services in
the account. Geo-redundant storage costs more than locally-redundant
storage. Premium performance and the Hot access tier increase the cost of
blobs.

You can use multiple storage accounts to reduce costs. For example, you
could partition your data into critical and non-critical categories. You could
place your critical data into a storage account with geo-redundant storage
and put your non-critical data in a different storage account with locally-
redundant storage.

« Tolerance for management overhead - Each storage account requires some
time and attention from an administrator to create and maintain. It also
increases complexity for anyone who adds data to your cloud storage;
everyone in this role needs to understand the purpose of each storage
account so they add new data to the correct account.

Storage accounts are a powerful tool to help you get the performance and
security you need while minimizing costs. A typical strategy is to start with an
analysis of your data and create partitions that share characteristics like
location, billing, and replication strategy, and then create one storage account
for each partition.

Advanced settings

o Secure transfer required setting controls whether HTTP can be used for the
REST APIs used to access data in the Storage account. Setting this option to

pg. 43

SKILLCERTPRO

Enabled will force all clients to use SSL (HTTPS). Most of the time you'll want
to set this to Enabled as using HTTPS over the network is considered a best
practice.

If Secured transfer(HTTPS) is enabled, it will enforce some additional restrictions.
Azure files service connections without encryption will fail, including scenarios
using SMB 2.1 or 3.0 on Linux. Because Azure storage doesn't support SSL for
custom domain names, this option cannot be used with a custom domain name.

« Large file shares provides support up to a 100TiB, however this type of
storage account can't convert to a Geo-redundant storage offering and
upgrades are permanent.

« Blob Soft delete lets you recover your blob data in many cases where blobs
or blob snapshots are deleted accidentally or overwritten.

« Data Lake Storage Gen2 option is for big-data applications.

Exercise - Create a storage account using the Azure portal

3. Connect an app to Azure Storage

A single Azure subscription can host up to 200 storage accounts, each of which can
hold 500 TB of data. If you have a business case, you can talk to the Azure Storage
team and get approval for up to 250 storage accounts in a subscription, which pushes
your max storage up to 125 Petabytes!

Blob storage
Azure Blob storage is an object storage solution optimized for storing massive
amounts of unstructured data, such as text or binary data. Blob storage is ideal for:

e Serving images or documents directly to a browser, including full static
websites.

« Storing files for distributed access.

e Streaming video and audio.

» Storing data for backup and restoration, disaster recovery, and archiving.
e Storing data for analysis by an on-premises or Azure-hosted service.

Azure Storage supports three kinds of blobs:

pg. 44

https://docs.microsoft.com/en-us/learn/modules/create-azure-storage-account/5-exercise-create-a-storage-account?source=learn

SKILLCERTPRO

Blob

type Description
Block blobs are used to hold text or binary files up to ~5 TB (50,000
blocks of 100 MB) in size. The primary use case for block blobs is the
Block storage of files that are read from beginning to end, such as media
blobs files or image files for websites. They are named block blobs
because files larger than 100 MB must be uploaded as small blocks,
which are then consolidated (or committed) into the final blob.
Page blobs are used to hold random-access files up to 8 TB in size.
Page Page blobs are used primarily as the backing storage for the VHDs
blobs used to provide durable disks for Azure Virtual Machines (Azure
VMs). They are named page blobs because they provide random
read/write access to 512-byte pages.
Append blobs are made up of blocks like block blobs, but they are
optimized for append operations. These are frequently used for
Append logging information from one or more sources into the same blob.
blobs For example, you might write all of your trace logging to the same

append blob for an application running on multiple VMs. A single
append blob can be up to 195 GB.

Files Azure Files enables you to set up highly available network file shares that can
be accessed by using the standard Server Message Block (SMB) protocol. This means
that multiple VMs can share the same files with both read and write access. You can
also read the files using the REST interface or the storage client libraries. You can also
associate a unique URL to any file to allow fine-grained access to a private file for a
set period of time. File shares can be used for many common scenarios:

« Storing shared configuration files for VMs, tools, or utilities so that everyone is
using the same version.

o Log files such as diagnostics, metrics, and crash dumps.

e Shared data between on-premises applications and Azure VMs to allow
migration of apps to the cloud over a period of time.

Exercise - Create a new app to work with Azure storage
Exercise - Create an Azure storage account

Exercise - Add the storage client library to your app

pg. 45

https://docs.microsoft.com/en-us/learn/modules/connect-an-app-to-azure-storage/3-exercise-create-your-app?pivots=csharp
https://docs.microsoft.com/en-us/learn/modules/connect-an-app-to-azure-storage/4-exercise-create-storage-account
https://docs.microsoft.com/en-us/learn/modules/connect-an-app-to-azure-storage/6-exercise-add-the-azure-storage-lib?pivots=csharp

SKILLCERTPRO

To work with data in a storage account, your app will need two pieces of data:

e An access key - Each storage account has two unique access keys that are
used to secure the storage account.

e The REST API endpoint - The REST endpoint is a combination of your storage
account name, the data type, and a known domain. For example:
o Blobs - https://[name].blob.core.windows.net/

o Queues - https://[name].queue.core.windows.net/
o Tables - https://[name].table.core.windows.net/
o Files - https://[name].file.core.windows.net/

Connection strings - The simplest way to handle access keys and endpoint URLs
within applications is to use storage account connection strings. A connection string
provides all needed connectivity information in a single text string.
DefaultEndpointsProtocol=https,AccountName={your-storage};, AccountKey={your-
access-keyj}; EndpointSuffix=core.windows.net

It's highly recommended that you periodically rotate your access keys to ensure they
remain private, just like changing your passwords. If you are using the key in a server
application, you can use an Azure Key Vault to store the access key for you. Key Vaults
include support to synchronize directly to the Storage Account and automatically rotate
the keys periodically. Using a Key Vault provides an additional layer of security, so your
app never has to work directly with an access key.

Shared access signatures (SAS)

Access keys are the easiest approach to authenticating access to a storage account.
However they provide full access to anything in the storage account, similar to a root
password on a computer.

Storage accounts offer a separate authentication mechanism called shared access
signatures that support expiration and limited permissions for scenarios where you
need to grant limited access. You should use this approach when you are allowing
other users to read and write data to your storage account.

Exercise - Add Azure Storage configuration to your app

The simplest way to initialize the object model is to use CloudStorageAccount.Parse or
CloudStorageAccount.TryParse to parse the connection string. These methods only
guarantees that the connection is well-formatted, they don't verify that the account
exists or the access-key is valid. The resulting CloudStorageAccount instance returned
from the Parse() or TryParse() method call exposes methods to create a client objects to
access the Azure Blob, Files, Queue and Table storage services.

Exercise - Connect with your Azure Storage configuration

pg. 46

https://docs.microsoft.com/en-us/learn/modules/connect-an-app-to-azure-storage/8-exercise-add-azure-storage-configuration-to-your-app?pivots=csharp
https://docs.microsoft.com/en-us/learn/modules/connect-an-app-to-azure-storage/10-exercise-connect-with-your-azure-storage-configuration?pivots=csharp

SKILLCERTPRO

4. Secure your Azure Storage account

Encryption at rest

All data written to Azure Storage is automatically encrypted by Storage Service
Encryption (SSE) with a 256-bit Advanced Encryption Standard (AES) cipher. This
incurs no additional charges and doesn't degrade performance. It can't be disabled.
For virtual machines (VMs), Azure lets you encrypt virtual hard disks (VHDs) by using
Azure Disk Encryption. This encryption uses BitLocker for Windows images, and it
uses dm-crypt for Linux.

Azure Key Vault stores the keys automatically to help you control and manage the
disk-encryption keys and secrets. So even if someone gets access to the VHD image
and downloads it, they can't access the data on the VHD.

Encryption in transit

Keep your data secure by enabling transport-level security between Azure and the
client. Always use HTTPS to secure communication over the public internet. When
you call the REST APIs to access objects in storage accounts, you can enforce the use
of HTTPS by requiring secure transfer for the storage account. After you enable
secure transfer, connections that use HTTP will be refused. This flag will also enforce
secure transfer over SMB by requiring SMB 3.0 for all file share mounts.

CORS support

Azure Storage supports cross-domain access through cross-origin resource sharing
(CORS). CORS uses HTTP headers so that a web application at one domain can access
resources from a server at a different domain. By using CORS, web apps ensure that
they load only authorized content from authorized sources. CORS support is an
optional flag you can enable on Storage accounts. The flag adds the appropriate
headers when you use HTTP GET requests to retrieve resources from the Storage
account.

Role-based access control

To access data in a storage account, the client makes a request over HTTP or HTTPS.
Every request to a secure resource must be authorized. The service ensures that the
client has the permissions required to access the data. You can choose from several
access options. Arguably, the most flexible option is role-based access.

Azure Storage supports Azure Active Directory and role-based access control (RBAC)
for both resource management and data operations. To security principals, you can
assign RBAC roles that are scoped to the storage account. Use Active Directory to
authorize resource management operations, such as configuration. Active Directory
is supported for data operations on Blob and Queue storage.

To a security principal or a managed identity for Azure resources, you can assign

pg. 47

SKILLCERTPRO

RBAC roles that are scoped to a subscription, a resource group, a storage account, or
an individual container or queue.

Auditing access

Auditing is another part of controlling access. You can audit Azure Storage access by
using the built-in Storage Analytics service.

Storage Analytics logs every operation in real time, and you can search the Storage
Analytics logs for specific requests. Filter based on the authentication mechanism,
the success of the operation, or the resource that was accessed.

Azure Storage accounts can create authorized apps in Active Directory to control access
to the data in blobs and queues. This authentication approach is the best solution for
apps that use Blob storage or Queue storage. For other storage models, clients can use
a shared key, or shared secret. This authentication option is one of the easiest to use,
and it supports blobs, files, queues, and tables.

Shared Access Signatures(SAS)

A shared access signature is a string that contains a security token that can be
attached to a URI. Use a shared access signature to delegate access to storage
objects and specify constraints, such as the permissions and the time range of access.
Types of shared access signatures

e You can use a service-level shared access signature to allow access to specific
resources in a storage account. You'd use this type of shared access signature,
for example, to allow an app to retrieve a list of files in a file system or to
download a file.

o Use an account-level shared access signature to allow access to anything that
a service-level shared access signature can allow, plus additional resources
and abilities. For example, you can use an account-level shared access
signature to allow the ability to create file systems.

Network access control

By default, storage accounts accept connections from clients on any network. To limit
access to selected networks, you must first change the default action. You can restrict
access to specific IP addresses, ranges, or virtual networks.

Advanced Threat Protection

Detecting threats to your data is an important part of security. You can check an
audit trail for all activity against a storage account. But that will often only show you
that an intrusion has already occurred. What you really want is a way to be notified
when suspicious activity is happening. That's where the Advanced Threat Protection
feature in Azure Storage can help.

Advanced Threat Protection, now in public preview, detects anomalies in account
activity. It then notifies you of potentially harmful attempts to access your account.

pg. 48

SKILLCERTPRO

You don't have to be a security expert or manage security monitoring systems to
take advantage of this layer of threat protection.

Currently, Advanced Threat Protection for Azure Storage is available for the Blob
service. Security alerts are integrated with Azure Security Center. The alerts are sent
by email to subscription admins.

Azure Data Lke Storage security features

Azure Data Lake Storage Gen2 provides a first-class data lake solution that allows
enterprises to pull together their data. It's built on Azure Blob storage, so it inherits
all of the security features we've reviewed in this module.

Along with role-based access control (RBAC), Azure Data Lake Storage Gen2 provides
access control lists (ACLs) that are POSIX-compliant and that restrict access to only
authorized users, groups, or service principals. It applies restrictions in a way that's
flexible, fine-grained, and manageable. Azure Data Lake Storage Gen2 authenticates
through Azure Active Directory OAuth 2.0 bearer tokens. This allows for flexible
authentication schemes, including federation with Azure AD Connect and multifactor
authentication that provides stronger protection than just passwords.

More significantly, these authentication schemes are integrated into the main
analytics services that use the data. These services include Azure Databricks,
HDInsight, and SQL Data Warehouse. Management tools such as Azure Storage
Explorer are also included. After authentication finishes, permissions are applied at
the finest granularity to ensure the right level of authorization for an enterprise's big-
data assets.

The Azure Storage end-to-end encryption of data and transport layer protections
complete the security shield for an enterprise data lake. The same set of analytics
engines and tools can take advantage of these additional layers of protection,
resulting in complete protection of your analytics pipelines.

5. Store application data with Azure Blob storage

Azure Blob storage is unstructured, meaning that there are no restrictions on the
kinds of data it can hold. Blobs aren't limited to common file formats — a blob could
contain gigabytes of binary data streamed from a scientific instrument, an encrypted
message for another application, or data in a custom format for an app you're
developing.

Blobs are usually not appropriate for structured data that needs to be queried
frequently. They have higher latency than memory and local disk and don't have the
indexing features that make databases efficient at running queries. However, blobs
are frequently used in combination with databases to store non-queryable data. For
example, an app with a database of user profiles could store profile pictures in blobs.
Blobs are used for data storage in many ways across all kinds of applications and
architectures:

pg. 49

SKILLCERTPRO

e Apps that need to transmit large amounts of data using messaging system
that supports only small messages. These apps can store data in blobs and
send the blob URLs in messages.

o Blob storage can be used like a file system for storing and sharing documents
and other personal data.

o Static web assets like images can be stored in blobs and made available for
public download as if they were files on a web server.

o Many Azure components use blobs behind the scenes. For example, Azure
Cloud Shell stores your files and configuration in blobs, and Azure Virtual
Machines uses blobs for hard-disk storage.

In Blob storage, every blob lives inside a blob container. You can store an unlimited
number of blobs in a container and an unlimited number of containers in a storage
account. Containers are "flat" — they can only store blobs, not other containers.
Blobs and containers support metadata in the form of name-value string pairs. Your
apps can use metadata for anything you like: a human-readable description of a
blob's contents to be displayed by the application, a string that your app uses to
determine how to process the blob's data, etc.

Apps using blobs as part of a storage scheme that includes a database often don't
need to rely heavily on organization, naming, or metadata to indicate anything about
their data. Such apps commonly use identifiers like GUIDs as blob names and
reference these identifiers in database records. The app will use the database to
determine where blobs are stored and the kind of data they contain.

Other apps may use Azure Blob storage more like a personal file system, where
container and blob names are used to indicate meaning and structure. Blob names in
these kinds of apps will often look like traditional file names and include file name
extensions like ,jpg to indicate what kind of data they contain. They'll use virtual
directories (see below) to organize blobs and will frequently use metadata tags to
store information about blobs and containers.

Blob name prefixes (virtual directories)

Technically, containers are "flat" and do not support any kind of nesting or hierarchy.
But if you give your blobs hierarchical names that look like file paths (such as
finance/budgets/2017/q1.xls), the API's listing operation can filter results to specific
prefixes. This allows you to navigate the list as if it was a hierarchical system of files
and folders.

This feature is often called virtual directories because some tools and client libraries
use it to visualize and navigate Blob storage as if it was a file system. Each folder
navigation triggers a separate call to list the blobs in that folder.

Public access and containers as security boundaries
By default, all blobs require authentication to access. However, individual containers

pg. 50

SKILLCERTPRO

can be configured to allow public downloading of their blobs without authentication.
This feature supports many use cases, such as hosting static website assets and
sharing files. This is because downloading blob contents works the same way as
reading any other kind of data over the web: you just point a browser or anything
that can make a GET request at the blob URL.

Enabling public access is important for scalability because data downloaded directly
from Blob storage doesn't generate any traffic in your server-side app. Even if you
don't immediately take advantage of public access or if you will use a database to
control data access via your application, plan on using separate containers for data
you want to be publicly available.

In addition to public access, Azure has a shared access signature feature that allows
fine-grained permissions control on containers. Precision access control enables
scenarios that further improve scalability, so thinking about containers as security
boundaries in general is a helpful guideline.

Exercise - Create Azure storage resources
Exercise - Configure and initialize the client library
Exercise - Get blob references

Exercise - Blob uploads and downloads

pg. 51

https://docs.microsoft.com/en-gb/learn/modules/store-app-data-with-azure-blob-storage/4-create-storage-resources
https://docs.microsoft.com/en-gb/learn/modules/store-app-data-with-azure-blob-storage/5-configure-and-initialize-the-client-library
https://docs.microsoft.com/en-gb/learn/modules/store-app-data-with-azure-blob-storage/6-getting-blob-references
https://docs.microsoft.com/en-gb/learn/modules/store-app-data-with-azure-blob-storage/7-blob-uploads-and-downloads

