

 pg. 1

SKILLCERTPRO

Hashicorp Terraform Associate Master Cheat

Sheet

Objectives

1. Understand Infrastructure as Code (IaC) concepts

2. Understand Terraform's purpose (vs other IaC)

3. Understand Terraform basics

4. Use the Terraform CLI (outside of core workflow)

5. Interact with Terraform modules

6. Navigate Terraform workflow

7. Implement and maintain state

8. Read, generate, and modify configuration

9. Understand Terraform Cloud and Enterprise capabilities

Additional Hashicorp Resources

 The exam will be on Terraform 0.12.0 and higher.

 Exam Review

 Official Study Guide

 Lab Tutorials

 Terraform Registry - find modules for deploying common infra

Additional External Resources

 General Terraform Best Practices

 Terraform Cloud Interactive Learning

https://learn.hashicorp.com/terraform/certification/terraform-associate-review
https://learn.hashicorp.com/tutorials/terraform/associate-study
https://learn.hashicorp.com/tutorials/terraform/infrastructure-as-code?in=terraform/aws-get-started
https://registry.terraform.io/
https://www.terraform-best-practices.com/
https://www.katacoda.com/hashicorp/scenarios/terraform-cloud

 pg. 2

SKILLCERTPRO

NOTE: Most of this information comes directly from the Hashicorp website I've

compiled the resources here for accessibility and easy review. 🙂

Objective 1: Understand Infrastructure as Code (IaC)

concepts

Explain What IaC is?

Infrastructure is described using a high-level configuration syntax. This allows a blueprint of our

data center to be versioned and treated as we would any other code. Additionally, infrastructure

can be shared and re-used.

IaC makes it easy to provision and apply infrastructure configurations, saving time. It standardizes

workflows across different infrastructure providers (e.g., VMware, AWS, Azure, GCP, etc.) by using

a common syntax across all of them.

It is infrastructure (CPUs, memory, disk, firewalls, etc.) defined as code within definition files.

Describe advantages of IaC patterns?

 Can be applied throughout the infrastructure lifecycle

o Day 0 : Initial Build

o Day 1 : OS and application config you apply after the initial build. Includes OS

updates, patches, app config.

 Saves time by making it easy to provision and apply infrastructure

configuration. Workflow is standardized across providers wether its VMWare, AWS,

Azure, or GCP.

 It's easy to understand the intent of infrastructure changes.

 Iac makes changes idempotent:

o The result will always be the same since the same code is being applied

 Iac makes changes consistent:

o The manual work is removed with Iac no more need for system administrators to

remotely connect to each machine by executing a series of commands or scripts

which can cause inconsistencies based on who executes it

 Iac makes changes predictable:

o code can be tested before applying it to production so results are always

predictable

 Iac allows for mutation in previously defined configurations, making for a more

manageable system

Objective 2: Understand Terraform's purpose (vs other IaC)

Explain multi-cloud and provider-agnostic benefits

Multi-cloud deployment increases fault tolerance. This means in the event of failure there is a

more graceful recovery of a region or provider.

https://learn.hashicorp.com/terraform/certification/terraform-associate-study-guide

 pg. 3

SKILLCERTPRO

The benefits of being provider-agnostic means there can be a single configuration that manages

many providers.

Explain the benefits of state

 Mapping to the Real World

o Terraform requires a database to map Tf(Terraform) config to the real world. ex.

With state mapping Tf knows resource resource "aws_instance"

"foo" represents instance i-abcd34233.

 Metadata

o Tf tracks metadata or resource dependencies

o Tf keeps a copy of the most recent set of dependencies in state. So that correct

order of operations can be executed even if an item is deleted from the

configuration.

 Performance

o besides basic mapping Tf also keeps a cache of attribute values for all resources

in the state.

o most optional feature of state, only used to improve performance.

o small infra: for plan and apply Tf syncs all resources in state

o large infra: cache state is used because of API rate limits and querying all

resources is too slow. Large infra also make use of -refresh=false and -

target flags

 Syncing

o default syncing Tf stores state in a file in the current working directory

o for teams remote state is used, remote locking is utilized to avoid multiple people

running Tf at the same time.

IaC with Terraform

At a high level, Terraform allows operators to use HCL to author files containing definitions of

their desired resources on almost any provider (AWS, GCP, GitHub, Docker, etc) and automates

the creation of those resources at the time of apply.

 Workflows

o Scope: Establish resources that need to be created for the project

o Author: Create the configuration based on the scoped parameters with HCL

o Initialize: run terraform init to download the provider plug-ins for the project

o Plan & Apply: run terraform plan to verify creation then terraform apply to

create the resources and state files

 Advantages of Terraform

o Platform Agnostic: allows for management of a mixed environment with the same

workflow

o State Management: State files are created when a project is initialized. state is

used to create plans and update our infrastructure. State determines how

configuration changes are measured. When a change is made, those changes are

compared with the state file to determine resource creation or changes

o Operator Confidence: terraform apply allows for review before changes are

applied.

https://www.terraform.io/docs/providers/index.html

 pg. 4

SKILLCERTPRO

Objective 3: Understand Terraform basics

Handle Terraform and provider installation and versioning

 HashiCorp Terraform Tutorial

 This tutorial goes through the process of installing Terraform and provider installation

and versioning

Providers

 The primary construct of the Terraform language are resources, the behaviors of

resources rely on the resource types, resource types are defined by providers.

 Providers have a set of resource types that defines which arguments are accepted, what

attributes it exports, and how changes are applied to APIs.

 Providers require their own configuration for regions, authentication etc.

 Configuration

o providers are configured with a provider block:
o provider "google" {
o project = "acme-app"
o region = "us-central1"
o }
o

#The google provider is assumed to be the provider for the resource
type named google_compute_instance

o configuration arguments like project and region are evaluated in order

o 2 meta-arguments available for provider blocks:

 version - to specify a version and
 alias - to use same provider with different config for

different resources

o provider blocks are not required if not explicitly configured Tf uses an empty

default config when a resource from the provider is added

 Initialization

o when a new provider is added to configuration Tf has to initialize the provider

before it can be used

o terraform init downloads and initializes any providers

o only installs to current working directory, other directories can have other

versions installed

 Versions

https://learn.hashicorp.com/terraform?track=getting-started#getting-started

 pg. 5

SKILLCERTPRO

o versions should be configured in production to avoid breaking changes

o the required_providers block should be used in the Tf block:
o terraform {
o required_providers {
o aws = "~> 1.0"
o }

 }

o When terraform init is re-run with providers already installed, it will use an

already-installed provider that meets the constraints in preference to

downloading a new version

o to upgrade all modules run terraform init -upgrade

 Multiple Provider Instances

o we can have multiple configs for the same provider by using the alias meta-

argument to allow for multiple regions per provider, targeting multiple Docker

hosts, etc.
o # The default provider configuration
o provider "aws" {
o region = "us-east-1"
o }
o
o # Additional provider configuration for west coast region
o provider "aws" {
o alias = "west"
o region = "us-west-2"

 }

 Third Party Plugins

o anyone can develop and distribute 3rd party Tf provers

o need to be manually downloaded because they are not supported by terraform

init

o download must go in the user plugin directory - Windows:

%APPDATA%\terraform.d\plugins | Others: ~/.terraform.d/plugins

 Plugin Cache

o terraform init downloads plugins into a subdirectory of the working directory so

each working dir is self contained. This means with more than one configuration

with the same provider has a separate copy of the plugin for each config

o plugins can be large so this isn't performant - Tf allows for a shared local

directory for plugin cache. This has to be manually created in the CLI

Configuration File.
o # (Note that the CLI configuration file is _not_ the same as the .tf

files
o # used to configure infrastructure.)
o

 plugin_cache_dir = "$HOME/.terraform.d/plugin-cache"

Terraform Settings

 Terraform Block Syntax

 pg. 6

SKILLCERTPRO

o only constant values can be used
o terraform {
o # ...

 }

 Configuring a Terraform Backend

o this determines how state is stored, how operations are performed, remote back-

ends for teams etc.
o terraform {
o backend "s3" {
o # (backend-specific settings...)
o }

}

 Specifying a Required Terraform Version

 Specifying Required Provider Versions

 Experimental Language Features

Describe plug-in based architecture

 Terraform is build on plug-in based architecture. Providers and provisioners used in

configuration are plugins (AWS, Heroku). Anyone can create a new plugin.

 Demonstrate using multiple providers

 Build Infrastructure– Providers

Describe how Terraform finds and fetches providers

 Resource types are defined by providers

 Provider configuration is created with a provider block, the provider name is the name in

the block header

 When a new provider is added Terraform has to initialize it before its used with

the terraform init command. This downloads and installs the providers plugin

Explain when to use and not use provisioners and when to use local-exec or remote-exec

 Provisioners - provisioners are used to model specific actions on the local machine or on

a remote machine to prepare infrastructure objects

 Provisioners are there if needed but they add complexity and uncertainty (should only be

used as a last result)

 Provisioners should be used if no other option will work.

 Use cases:

o Passing data into virtual machines and other compute resources

o running config management software

 local-exec - invokes a local executable after the resource is created. Invokes a process on

the machine not on the resource.

 pg. 7

SKILLCERTPRO

 remote-exec - invokes a script on a remote resource after it is created.

Objective 4: Use the Terraform CLI (outside of core

workflow)

Given a scenario: choose when to use terraform fmt to format code
terraform fmt

 This command is used for rewriting Terraform configuration files to a canonical format

and style.

 It applies the Terraform language style conventions along with other changes for

readability.

 This insures consistency

 There might be changes with Terraform versions so it is recommended to run this

command on modules after an upgrade.

Given a scenario: choose when to use terraform taint to taint Terraform resources
terraform taint

 Marks a resource as tainted, forcing it to be destroyed and recreated on the next apply.

 It does not modify infrastructure but does modify the state file

 After a resource is marked the next plan shows it will be destroyed and recreated on the

next apply

 Useful when we want a side effect of a recreation that is not visible in the attributes of the

resource. For ex/rebooting the machine from a base image causing a new startup script

to run.

 This command can affect resources that depend on the tainted resource. Ex/ DNS

resource that uses IP of a server, that resource might need to be updated with the new IP

of a tainted server.

 Examples:

 #Tainting a Single Resource
 terraform taint aws_security_group.allow_all

 #Tainting a single resource created with for_each
 terraform taint
'module.route_tables.azurerm_route_table.rt[\"DefaultSubnet\"]'

 #Tainting a Resource within a Module
 terraform taint "module.couchbase.aws_instance.cb_node[9]"

Given a scenario: choose when to use terraform import to import existing infrastructure into our

Terraform state
terraform import

 Imports existing resources into Terraform

 Examples:

 #Import into Resource

 pg. 8

SKILLCERTPRO

 #import an AWS instance into the aws_instance resource named foo
 terraform import aws_instance.foo i-abcd1234

 #Import into Module
 #import an AWS instance into the asw_instance resource named bar into
module named foo:
 terraform import module.foo.aws_instance.bar i-abcd1234

 #Import into Resource configured with count
 #import an AWS instance into the first instance of the aws_instance
resource named baz configured with count:
 terraform import 'aws_instance.baz[0]' i-abcd1234

 #Import into Resource configured with for_each
 #import an AWS instance into the example instance of the aws_instance
resource named baz configured with for_each:
 terraform import 'aws_instance.baz["example"]' i-abcd1234 #Linux,
MacOs, Unix
 terraform import 'aws_instance.baz[\"example\"]' i-abcd1234 #PowerShell
 terraform import aws_instance.baz[\"example\"] i-abcd1234 #Windows

Given a scenario: choose when to use terraform workspace to create workspaces
terraform workspace
terraform workspace select
terraform workspace new

 Terraform configuration has a backend that defines operations and where persistent data

is stored (state)

 Persistent data in the backend belongs to a workspace.

 Creating different workspaces is useful to manage different stages of deployment

(sandbox or production)

 At first the backend only has one workspace 'default'. This workspace cannot be deleted.

 Certain backends can support multiple named workspaces. This allows multiple states to

be associated with a single configuration.

 Config still only has one backend with more than one instance of that config

 Backends that support multiple workspaces:

o AzureRM

o Consul

o COS

o GCS

o Local

o Manta

o Postgres

o Remote

o S3

 Examples:

 #Creating a workspace

 terraform workspace new bar

 #Created and switched to workspace "bar"!

 #We're now on a new, empty workspace. Workspaces isolate their state,

 #so if we run "terraform plan" Terraform will not see any existing state

https://www.terraform.io/docs/state/purpose.html

 pg. 9

SKILLCERTPRO

 #for this configuration.

Given a scenario: choose when to use terraform state to view Terraform state
terraform state

 Used for advanced state management

 Used instead of changing state directly

 this is a nested subcommand (has more subcommands)

o Resource Addressing

o list

o mv

o pull

o push

o rm

o show

Given a scenario: choose when to enable verbose logging and what the outcome/value is
TF_LOG
#LOG LEVELS
TRACE
DEBUG
INFO
WARN
ERROR
TF_LOG_PATH #Persist logged output

 Trace is the most verbose and it is the default

 If Terraform crashes a Crash log is saved with the debug logs with panic message and

backtrace

Objective 5: Interact with Terraform modules

Contrast module source options

 Module Overview

o Definition - a set of configuration files in a single directory. A container for

multiple resources that are used together.

o A module that is called by another configuration is sometimes referred to as a

"child module" of that configuration.

 Applications

o Organize configuration - easier to navigate, understand, and update our

configuration by keeping all related parts together.

o Encapsulate configuration - put configuration into distinct logical components.

Reduces chance of error. Ex/naming two diff resources the same thing.

https://www.terraform.io/docs/commands/state/addressing.html
https://www.terraform.io/docs/commands/state/list.html
https://www.terraform.io/docs/commands/state/mv.html
https://www.terraform.io/docs/commands/state/pull.html
https://www.terraform.io/docs/commands/state/push.html
https://www.terraform.io/docs/commands/state/rm.html
https://www.terraform.io/docs/commands/state/show.html

 pg. 10

SKILLCERTPRO

o Re-use configuration - share and re-use modules with the public and teams

o Provide consistency and ensure best practices

 Module source options:

o we reference a Public Registry Module by declaring the source.
 module "consul" {

 #<NAMESPACE>/<NAME>/<PROVIDER>

 source = "hashicorp/consul/aws"

 version = "0.1.0"
 }

o Private Registry Module Sources follow this syntax

 module "vpc" {
 #<HOSTNAME>/<NAMESPACE>/<NAME>/ <PROVIDER>
 source = "app.terraform.io/example_corp/vpc/aws"
 version = "0.9.3"
}

Interact with module inputs and outputs

Modules

Describe variable scope within modules/child modules

 variables are parameters for modules

 variables allow us to customize modules without changing the source code and they

allow for modules to be shared between different configurations.

 root module variables can be set with CLI and environment variables.

 When declaring variables in child modules, the calling module should pass values in

the module block.

 Declaring a variable:

 variable names have to be unique per module

 any name can be used except for :source, version, providers,

count,for_each,lifecycle,depends_on,locals

 Note: if type and default are used, default must be convertible to the type
 variable "image_id" {

 type = string

 #defines what value types are accepted for the variable, if not explicit
any type is accepted.

 #Types: string,number,bool, any(to allow for any type) | Complex Type:
list(<TYPE>),set(<TYPE>),map(<TYPE>),object({<ATTR NAME> = <TYPE>, ... }),
tuple([<TYPE>, ...])

 validation {

 condition = length(var.image_id) > 4 && substr(var.image_id, 0, 4) ==
"ami-"

 error_message = "The image_id value must be a valid AMI id, starting with
\"ami-\"."

 }

 #validation rules are experimental - uses value of variable to return true
or false

 }

https://learn.hashicorp.com/terraform/modules/using-modules

 pg. 11

SKILLCERTPRO

 variable "availability_zone_names" {

 type = list(string)

 default = ["us-west-1a"]

 #default means the variable is considered optional, used if no other value
is set when calling the module or running Terraform

 description = "variable description, purpose and value expected"

 }

 variable "docker_ports" {

 type = list(object({

 internal = number

 external = number

 protocol = string

 }))

 default = [

 {

 internal = 8300

 external = 8300

 protocol = "tcp"

 }

]

 }

 #---------------------

 #To use validation we need to opt in

 terraform {

 experiments = [variable_validation]
}

 Using variable values
 resource "aws_instance" "example" {

 instance_type = "t2.micro"

 ami = var.image_id #expression reads var.<NAME> name is the label
declared on the variable
 }

 Set root module variables 1) In Terraform Cloud Workspace 2) Individual CLI with -

var 3) In .tfvars file 4) As environment variable

 child modules have variables set in the configuration of the parent module

Discover modules from the public Terraform Module Registry

 Finding and Using Modules

o Terraform Registry

Defining module version

 Use the version attribute in the module block to specify versions:
 module "consul" {

 source = "hashicorp/consul/aws"

 version = "0.0.5" #single explicit version

 #or

 version = >= 1.2.0 #version constraint expression

https://registry.terraform.io/

 pg. 12

SKILLCERTPRO

 servers = 3
 }

Objective 6: Navigate Terraform workflow

Describe Terraform workflow (Write -> Plan -> Create)

 Write
o Author infrastructure as code

 Plan
o Preview changes before applying

 Create (Apply)
o Provision reproducible infrastructure

 Configuration is written like any program, use version control to keep track of changes
 # Create repository

 $ git init my-infra && cd my-infra

 Initialized empty Git repository in /.../my-infra/.git/

 # Write initial config

 $ vim main.tf

 # Initialize Terraform

 $ terraform init

 Initializing provider plugins...

 # ...
Terraform has been successfully initialized!

 running Terraform plan repeatedly is useful to make sure there are no syntax errors and
the correct code is being written per the desired outcome.

 First run Terraform apply before pushing to git to make sure the provisions are correct

 While working in teams it is best to use branches to avoid code collision.
 $ git checkout -b <branch-name>

 Switched to a new branch <branch-name>

 Teams can review changes via Terraform plans and pull requests

 Terraform cloud helps streamline this process in a team setting
o Write - secure location for storing variables and state with the "remote" backend,

then a Terraform Cloud API key is used to edit the configuration and run plans
against the state file.

 terraform {

 backend "remote" {

 organization = "my-org"

 workspaces {

 prefix = "my-app-"

 }

 }

 }

 #--------------------------------------

 $ terraform workspace select my-app-dev

 Switched to workspace "my-app-dev".

 $ terraform plan

 Running plan remotely in Terraform Enterprise.

 Output will stream here. To view this plan in a browser, visit:

 https://app.terraform.io/my-org/my-app-dev/.../

 pg. 13

SKILLCERTPRO

 Refreshing Terraform state in-memory prior to plan...

 # ...
 Plan: 1 to add, 0 to change, 0 to destroy.

o Plan - plans are automatically run when a pull request is created. Status updates are
shown in the pull request view.

o Apply - A confirm and apply is needed after merging to run an apply.

The next section will go over Terraform Commands

Initialize a Terraform working directory (terraform init)

terraform init

 prepares working directory for use

 safe to run multiple times to bring the working directory up to date

 it will never delete a configuration or state

Validate a Terraform configuration (terraform validate)

terraform validate

 validates the configuration files in the dir, this does not apply to things like remote state or
provider APIs

 validate checks for syntax, internal consistency, such as attribute names and value types

 safe to run automatically or as a test step for CI

 requires initialized working directory

Generate and review an execution plan for Terraform (terraform plan)

Terraform plan

 Creates an execution plan, automatically performs a refresh

Execute changes to infrastructure with Terraform (terraform apply)

terraform apply

 applies changes needed for the desired state of the configuration
 runs set of actions defined by a terraform plan command

Destroy Terraform managed infrastructure (terraform destroy)

terraform destroy

 completely destroys and terraform created infrastructure

Objective 7: Implement and maintain state

 pg. 14

SKILLCERTPRO

Describe default local backend

 Backends - by default Terraform uses 'local' backend

o This is an abstraction that determines how state is loaded and how an operation

is executed. It allows such actions as non-local file state storage and remote

execution

o Benefits:

 Working in a team - can store state remotely and use locks to prevent

corruption in state

 Keeping sensitive information off disk - state in backends are only stored

in memory

 Remote operations - terraform apply can take time for larger

infrastructures, some backends can use remote operations instead to

execute commands remotely

 Local example config:

 terraform {

 backend "local" {

 path = "relative/path/to/terraform.tfstate"

 }
 }

Outline state locking

State Locking

 if supported by your backend state can be locked so others cannot change it while

another change is being made.

 this is automatic for all operations that can write state

 Backends types supporting

locking:(standard)artifactory,azurerm,consul,cos,etcd,etcdv3,gcs,http,manta,oss,pg,s3,swift

,terraform enterprise, and in enhanced backends there are remote operations as well

(plan, apply, etc.)

 A lock can be forced open with force-unlock which requires a unique nonce lock ID

Handle backend authentication methods

 Different backends have different configuration for authentication, authentication can be

done different ways within a backend.

 Example with azurerm:

 #authenticating using the Azure CLI or a Service Principal:

 terraform {

 backend "azurerm" {

 resource_group_name = "StorageAccount-ResourceGroup"

 storage_account_name = "abcd1234"

 container_name = "tfstate"

 key = "prod.terraform.tfstate"

 }

 }

 #----------------------------------

 #authenticating using Managed Service Identity (MSI):

 pg. 15

SKILLCERTPRO

 terraform {

 backend "azurerm" {

 storage_account_name = "abcd1234"

 container_name = "tfstate"

 key = "prod.terraform.tfstate"

 use_msi = true

 subscription_id = "00000000-0000-0000-0000-000000000000"

 tenant_id = "00000000-0000-0000-0000-000000000000"

 }
 }

Describe remote state storage mechanisms and supported standard backends

Remote State Storage

 Uses Terraform Cloud as a backend, allows free remote state management

 Tutorial for Remote State Storage

Standard backends

 artifactory,azurerm,consul,cos,etcd,etcdv3,gcs,http,manta,oss,pg,s3,swift,terraform

enterprise

Describe effect of Terraform refresh on state

 terraform refresh

 reconciles the state Terraform knows about via the state file.

 refresh does not modify the infrastructure, it does modify the state file.

Describe backend block in configuration and best practices for partial configurations

Backend Config

 Backends are configured in the Terraform files.

 there can only be one backend

 This is an example of a config for "consul":

terraform {
 backend "consul" {
 address = "demo.consul.io"
 scheme = "https"
 path = "example_app/terraform_state"
 }
}

Partial Configuration

 You can omit certain arguments from the backend configuration.

 This is done to avoid storing access keys or private data in the main configuration

 adding the omitted arguments must be done during the initialization process by doing

the following:

o Interactively - If interact input is enabled it will ask you for the required values

o File - terraform init -backend-config=PATH that contains the variables

https://learn.hashicorp.com/terraform/getting-started/remote

 pg. 16

SKILLCERTPRO

o Command-link key/value pairs - terraform init -backend-

config="KEY=VALUE" **This isn't recommended for secret keys since CL flags can

be stored in a history file.

Understand secret management in state files

 state contains resource IDs and attributes, db data that may have passwords.

 with remote state, state is only in memory when in use. This is more secure

 also some backends can encrypt the state data at rest

 Terraform Cloud encrypts state at rest and protects it with TLS in transit.

 Terraform Cloud keeps track of user identity, and state changes.

Objective 8: Read, generate, and modify configuration

Demonstrate use of variables and outputs

Input Variables Tutorial

Output Variables Tutorial

Describe secure secret injection best practice

Vault Provider for Terraform

 Best Practices

o avoid putting secret or sensitive variables in config or state files.

o Webinar walk-through on Best Practices

o set secret variables for provider config block in environment variables.

#auth_login Usage with userpass backend
variable login_username {}
variable login_password {}

provider "vault" {
 auth_login {
 path = "auth/userpass/login/${var.login_username}"

 parameters = {
 password = var.login_password
 }
 }
}
#auth_login Usage with approle
variable login_approle_role_id {}
variable login_approle_secret_id {}

provider "vault" {
 auth_login {
 path = "auth/approle/login"

 parameters = {
 role_id = var.login_approle_role_id

https://learn.hashicorp.com/terraform/getting-started/variables
https://learn.hashicorp.com/terraform/getting-started/outputs
https://www.youtube.com/watch?v=fOybhcbuxJ0

 pg. 17

SKILLCERTPRO

 secret_id = var.login_approle_secret_id
 }
 }
}
#For multiple namespace in vault use alias
provider "vault" {
 alias = "ns1"
 namespace = "ns1"
}

provider "vault" {
 alias = "ns2"
 namespace = "ns2"
}

resource "vault_generic_secret" "secret"{
 provider = "vault.ns1"
 ...
}

Understand the use of collection and structural types

Complex Types

 complex types group values into a single value. 2 types: Collection type(grouping similar

values) and Structure types (grouping dissimilar values)

Collection Types Structural Types

multiple values of a type can be

grouped together. The type of

value within a collection is

called element type

multiple values of several types grouped

together

Example:list(string)List of

string

Example: Object type of object({

name=string, age=number }) would match

this value: { name "John" age = 52

} Example of tuple:["a", 15, true]

Collection

Types:list():Sequence of whole

numbers starting at

0 map():collection of values id'd

by a label set():unique values

with no ids or order

Structural Types: object():collection of

named attributes that have their own

type.The schema for object types is {
<KEY> = <TYPE>, <KEY> = <TYPE>, ...

} and tuple():sequence of elements id'd

by whole numbers, each element has its

own type.The schema for tuple types

is [<TYPE>, <TYPE>, ...]

 pg. 18

SKILLCERTPRO

Create and differentiate resource and data configuration

 Syntax
Types and

Arguments
Behavior

Meta-

Arguments

Resources

blocks declare a

resource of a given

type aws_instance with

a local name web. The

local name is used to

reference the resource

in the module. In the

braces {} config

arguments are defined

for the resource type.

each

resource

has a single

resource

type, each

type

belongs to a

provider,

body of

resource are

specific to

type

when you

create a new

resource it

only exists in

the

configuration

until

you apply it.

When its

created it is

saved in

state, and can

be updated or

destroyed

Each

resource is

associated

with a single

resource

type, which

determines

the kind of

infrastructure

object it

manages and

what

arguments

and other

attributes the

resource

supports

Data

Sources

A data source is

accessed via a special

kind of resource known

as a data resource,

declared using a data

block

Each data

resource is

associated

with a

single data

source, this

determines

the kind of

object(s) it

reads and

the

available

arguments.

Most of the

items

within the

body of a

data block

are defined

by and

specific to

the selected

data source,

and these

arguments

can make

If the query

constraint

arguments

for a data

resource

refer only to

constant

values or

values that

are already

known, the

data resource

will be read

and its state

updated

during

Terraform's

"refresh"

phase, which

runs prior to

creating a

plan. more

on behavior

As data

sources are

essentially a

read only

subset of

resources,

they also

support the

same meta-

arguments of

resources

with the

exception of

the lifecycle

configuration

block.

https://www.terraform.io/docs/configuration/data-sources.html
https://www.terraform.io/docs/configuration/data-sources.html

 pg. 19

SKILLCERTPRO

 Syntax
Types and

Arguments
Behavior

Meta-

Arguments

full use of

expressions

and other

dynamic

Terraform

language

features.

Use resource addressing and resource parameters to connect resources together

Connecting resources

Use Terraform built-in functions to write configuration

Built-in Functions

 Terraform only supports given functions

 List of Functions

 This can also be viewed in the repo here

 To test functions in the command line run terraform console

Configure resource using a dynamic block

Dynamic Blocks

 In top level block constructs(like resources) expressions can be used only when assigning

a value to an argument with name=expression

 Some resource types have repeatable nested blocks in their arguments that don't accept

expressions.

 Example:

 resource "aws_elastic_beanstalk_environment" "tfenvtest" {

 name = "tf-test-name" # can use expressions here

 setting {

 # but the "setting" block is always a literal block

 }
}

 You can create repeatable nested blocks with the block type dynamic. This is supported

with resource,data,provider, and provisioner blocks

 Example:

 resource "aws_elastic_beanstalk_environment" "tfenvtest" {

 name = "tf-test-name"

 application = "${aws_elastic_beanstalk_application.tftest.name}"

 solution_stack_name = "64bit Amazon Linux 2018.03 v2.11.4 running Go
1.12.6"

 dynamic "setting" {

 for_each = var.settings

 content {

 namespace = setting.value["namespace"]

 name = setting.value["name"]

https://github.com/ari-hacks/terraform-study-guide/blob/master/Terraform%20code%20examples%20/resource_addressing.hcl
https://www.terraform.io/docs/configuration/functions.html
https://github.com/ari-hacks/terraform-study-guide/blob/master/Terraform%20code%20examples%20/functions

 pg. 20

SKILLCERTPRO

 value = setting.value["value"]

 }

 }
}

 Dynamic blocks can only produce arguments that belong to the resource type, data

source, provider or provisioner being configured.

 Overuse of dynamic blocks can get hard to read, it's recommended to use them only to

hide details in order to build a clean user interface for re-usability.

Describe built-in dependency management (order of execution based)

Resource Dependencies Tutorial

Objective 9: Understand Terraform Cloud and Enterprise

capabilities

Describe the benefits of Sentinel, registry, and workspaces

 Sentinel

o An embedded policy as a code framework used with Enterprise products. Policies

written in the Sentinel language

o Used for logic based policy decisions and can be extended to use information

form external sources.

o tfe_sentinel_policy resource can be used to upload a policy using Terraform

itself

o Sentinel can be used with Terraform Cloud as well by:

 Defining the policies - Policies are defined using the policy language with

imports for parsing the Terraform plan, state and configuration.

 Managing policies for organizations - Users with permission to manage

policies can add policies to their organization by configuring VCS

integration or uploading policy sets through the API. They also define

which workspaces the policy sets are checked against during runs. (More

about permissions.)

 Enforcing policy checks on runs - Policies are checked when a run is

performed, after the terraform plan but before it can be confirmed or the

terraform apply is executed.

 Mocking Sentinel Terraform data - Terraform Cloud provides the ability to

generate mock data for any run within a workspace. This data can be used

with the Sentinel CLI to test policies before deployment.

 Module Registry

o Private module registry helps us share Terraform modules with other

organizations.

https://learn.hashicorp.com/terraform/getting-started/dependencies
https://www.hashicorp.com/blog/why-policy-as-code/
https://docs.hashicorp.com/sentinel/writing/

 pg. 21

SKILLCERTPRO

o Support includes module versioning, search and filtering list of modules, and a

configuration designer to build workspaces

o Similar to the Public Registry

o Module Registry Announcement

 Workspaces

o Using Workspaces is how Terraform Cloud organized infrastructure

o Workspaces are Collections of Infrastructure - usually organizations have to

manage many collections.

o Each collection contains a configuration, state data, and variables.

o Terraform Cloud manages infrastructure collections with workspaces instead of

directories. A workspace contains everything Terraform needs to manage a given

collection of infrastructure, and separate workspaces function like completely

separate working directories.

o Terraform Enterprise: Understanding Workspaces And Modules

Differentiate OSS (Open Source Software) and Terraform Cloud workspaces

 CLI Workspaces

o relates to persistent data stored in the backend, a feature for using one

configuration to manage many similar grouped resources.

o uses with a Terraform's command line interface: terraform workspace new bar

 Enterprise/Cloud Workspaces

o Uses Workspaces to manage break up parts of a system

Summarize features of Terraform Cloud

 Terraform Cloud

o Terraform Cloud Pricing/Features

o Terraform Cloud Docs

o Main Features

 Workflow

 CLI, Remote Execution(Operations), Support for Local Execution,

Organize infra with workspaces, Remote state management, data

sharing, and run triggers, version control integration, private

module registry

 Integrations

 Full API, Notifications

 Access Control and Governance

 team based permission systems, sentinel policies, cost estimation

https://www.terraform.io/docs/registry/index.html
https://www.hashicorp.com/blog/hashicorp-terraform-module-registry/
https://www.hashicorp.com/resources/terraform-enterprise-understanding-workspaces-and-modules/
https://www.hashicorp.com/products/terraform/pricing/
https://www.terraform.io/docs/cloud/index.html

