

 pg. 1

SKILLCERTPRO

Databricks Apache Spark Certified

Developer Master Cheat Sheet

https://databricks.com/training/certified-spark-developer

Index

 1. GENERAL IMP LINKS

 2. POINTS TO CONSIDER

 3. COURSE TOPICS

o a. Spark Concept

o b. WEB UI / Spark UI

o c. RDD + DataFrame + DataSets + SparkSQL

o d. Streaming

o e. SparkMLLib

o f. GraphLib

 4. NOTES FROM THE BOOKS / GUIDES.

o 4.1 Learning Spark: Lightning-Fast Big Data

o 4.2 High Performance Spark - Holden Karau and Rachel Warren

o 4.3 Machine Learning with Spark: Nick Pentreath

o 4.4 https://databricks.gitbooks.io/databricks-spark-knowledge-

base/content/

o 4.5 Programming Guides from http://spark.apache.org/docs/latest/

 5. SPARKSESSION & PYSPARK.SQL.FUNCTIONS f

1. GENERAL IMP LINKS

Free online clusters for quick start Spark exercises!

 databricks - free 6GB cluster with preinstall spark and relavent dependencies

for notebooks

 zepl - limited resource spark non distributed notebooks

 colab - from google

 Kaggle Kernals (Kaggle kernal > Internet On ; ! Pip install pyspark)

spark on Google colab

https://databricks.com/training/certified-spark-developer
https://community.cloud.databricks.com/
https://community.cloud.databricks.com/
https://www.zepl.com/
https://colab.research.google.com/
https://www.kaggle.com/kernels

 pg. 2

SKILLCERTPRO

!apt-get install openjdk-8-jdk-headless -qq > /dev/null
!wget -q http://apache.osuosl.org/spark/spark-2.3.1/spark-2.3.1-bin-hadoop2.7.tgz
latest spark binary

!tar xf spark-2.3.1-bin-hadoop2.7.tgz
!pip install -q findspark

import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-2.3.1-bin-hadoop2.7"

import findspark
findspark.init()
from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[*]").getOrCreate()

spark on Kaggle Kernals

!pip install pyspark

from pyspark.sql import SparkSession
spark = SparkSession.builder.master("local[*]").getOrCreate()
spark

References:

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/

https://www.slideshare.net/cloudera/top-5-mistakes-to-avoid-when-writing-apache-

spark-applications

https://pages.databricks.com/rs/094-YMS-629/images/7-steps-for-a-developer-to-

learn-apache-spark.pdf

https://docs.databricks.com/spark/latest/gentle-introduction/index.html

http://www.bigdatatrunk.com/developer-certification-for-apache-spark-databricks/

2. POINTS TO CONSIDER

 40 questions, 90 minutes

 70% programming Scala, Python and Java, 30% are theory.

 Orielly learning spark : Chapter’s 3,4 and 6 for 50% ; Chapters 8,9(IMP) and 10

for 30%

 Programming Languages (Certifications will be offered in Scala or Python)

 Some experience developing Spark apps in production already

 Developers must be able to recognize the code that is more parallel, and less

memory constrained. They must know how to apply the best practices to

avoid run time issues and performance bottlenecks.

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/
https://www.slideshare.net/cloudera/top-5-mistakes-to-avoid-when-writing-apache-spark-applications
https://www.slideshare.net/cloudera/top-5-mistakes-to-avoid-when-writing-apache-spark-applications
https://pages.databricks.com/rs/094-YMS-629/images/7-steps-for-a-developer-to-learn-apache-spark.pdf
https://pages.databricks.com/rs/094-YMS-629/images/7-steps-for-a-developer-to-learn-apache-spark.pdf
https://docs.databricks.com/spark/latest/gentle-introduction/index.html
http://www.bigdatatrunk.com/developer-certification-for-apache-spark-databricks/

 pg. 3

SKILLCERTPRO

3. COURSE TOPICS

a. Spark Concept

http://spark.apache.org/

https://databricks.gitbooks.io/databricks-spark-reference-

applications/content/index.html

https://thachtranerc.wordpress.com/2017/07/10/databricks-developer-certifcation-

for-apache-spark-finally-i-made-it/

videos :

https://www.youtube.com/watch?v=7ooZ4S7Ay6Y

https://www.youtube.com/watch?v=tFRPeU5HemU

http://spark.apache.org/
https://databricks.gitbooks.io/databricks-spark-reference-applications/content/index.html
https://databricks.gitbooks.io/databricks-spark-reference-applications/content/index.html
https://thachtranerc.wordpress.com/2017/07/10/databricks-developer-certifcation-for-apache-spark-finally-i-made-it/
https://thachtranerc.wordpress.com/2017/07/10/databricks-developer-certifcation-for-apache-spark-finally-i-made-it/
https://www.youtube.com/watch?v=7ooZ4S7Ay6Y
https://www.youtube.com/watch?v=tFRPeU5HemU

 pg. 4

SKILLCERTPRO

 a.1 Spark code breakdown to optimizer

 pg. 5

SKILLCERTPRO

 pg. 6

SKILLCERTPRO

 a.2 pySpark ML pipeline breakdown

 a.3 Action[1] --> Job[1] --> Stages[n] --> Tasks[n]

o new job is created on actions

o new stages will be create if there is data shuffle in job. I.e. dependency

on output of first stage

o new tasks will be created based on number of partitions in RDD in

cluster.

rdd1 = sc.textFile("f1") #transformation - stage 1
rdd2 = sc.textFile("f2") #transformation - stage 2
rdd3 = rdd1.join(rdd2) #transformation + shuffle - stage 3
rdd4 = rdd3.mapPartition() #transformation - stage 3
rdd5 = rdd4.filter() #transformation - stage 3
rdd5.collect() #actions - stage 3

 a.4 Spark Standalone Mode

o In addition to running on the Mesos or YARN cluster managers, Spark

also provides a simple standalone deploy mode.

./bin/spark-shell --master spark://IP:PORT
URL of the master

 a.5 supervise flag to spark-submit

 pg. 7

SKILLCERTPRO

o In standalone cluster mode supports restarting your application

automatically if it exited with non-zero exit code.
spark-submit --supervise ...

 a.6 Dynamic Allocation

o https://spark.apache.org/docs/latest/configuration.html#dynamic-

allocation

o scales the number of executors registered with this application up and

down based on the workload.
o spark.dynamicAllocation.enabled

 a.7 Speculative execution

o spark.speculation

o If set to "true", if one or more tasks are running slowly in a stage, they

will be re-launched.

 a.8 locality wait

o spark.locality.wait

o How long to wait to launch a data-local task before giving up and

launching it on a less-local node.

o The same wait will be used to step through multiple locality levels

(process-local, node-local, rack-local and then any).

o It is also possible to customize the waiting time for each level by setting

spark.locality.wait.node, etc.

o You should increase this setting if your tasks are long and see poor

locality, but the default usually works well.

a.10 Performance Tunning

 http://spark.apache.org/docs/latest/tuning.html

 when tuning a Spark application – most importantly, data serialization and

memory tuning, CPU, network bandwidth, memory

 Data Serialization:

o Formats that are slow to serialize objects into, or consume a large

number of bytes, will greatly slow down the computation.

o Java serialization (default)

o Kryo serialization: SparkConf and calling conf.set("spark.serializer",

"org.apache.spark.serializer.KryoSerializer").

 Memory Tuning:

https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
http://spark.apache.org/docs/latest/tuning.html

 pg. 8

SKILLCERTPRO

o the amount of memory used by your objects (you may want your entire

dataset to fit in memory),

o the cost of accessing those objects

o the overhead of garbage collection (if you have high turnover in terms

of objects).

 Memory Management Overview :

o two categories: execution and storage.

o ***Execution memory refers to that used for computation in shuffles,

joins, sorts and aggregations,

o Storage memory refers to that used for caching and propagating

internal data across the cluster.

o When no execution memory is used, storage can acquire all the

available memory and vice versa.
o spark.memory.fraction
o spark.memory.storageFraction

 How Determining Memory Consumption

 create an RDD, put it into cache, and look at the “Storage” page in the web UI

 SizeEstimator’s estimate - consumption of a particular object

 With cache(), you use only the default storage level MEMORY_ONLY. With

persist(), you can specify which storage level you want.

o MEMORY_ONLY

o MEMORY_ONLY_SER

o MEMORY_AND_DISK

o MEMORY_AND_DISK_SER

o DISK_ONLY

 Tuning Data Structures

o avoid the Java features that add overhead, such as pointer-based data

structures and wrapper objects.

o prefer arrays of objects, and primitive types, instead of the standard

Java or Scala collection classes

o Avoid nested structures with a lot of small objects and pointers when

possible.

o Consider using numeric IDs or enumeration objects instead of strings

for keys.

 pg. 9

SKILLCERTPRO

 Serialized RDD Storage

o When your objects are still too large to efficiently store despite this

tuning, a much simpler way to reduce memory usage is to store them

in serialized formt

o Downside is performance hit, as it add overhead of deserialization

every time

 Garbage Collection Tuning

 Level of Parallelism

o Spark automatically sets the number of

o “map” tasks to run on each file according to its size (though you can

control it through optional parameters to SparkContext.textFile, etc),

o and for distributed “reduce” operations, it uses the largest parent RDD’s

number of partitions.
o spark.default.parallelism

o recommend 2-3 tasks per CPU core in your cluster.

o You can safely increase the level of parallelism to more than the

number of cores in your clusters.

 Memory Usage of Reduce Tasks

 Spark’s shuffle operations (sortByKey, groupByKey, reduceByKey, join, etc)

build a hash table within each task to perform the grouping, which can often

be large.

 The simplest fix here is to increase the level of parallelism, so that each task’s

input set is smaller

 Broadcasting Large Variables

o in general tasks larger than about 20 KB are probably worth optimizing.

 Data Locality

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-data-locality.html

 If data and the code that operates on it are together then computation tends

to be fast

 Typically it is faster to ship serialized code from place to place than a chunk of

data because code size is much smaller than data. - Spark builds its

scheduling around this general principle of data locality.

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-data-locality.html

 pg. 10

SKILLCERTPRO

 Spark prefers to schedule all tasks at the best locality level, but this is not

always possible.

 In situations where there is no unprocessed data on any idle executor, Spark

switches to lower locality levels.

 There are two options:

- a) wait until a busy CPU frees up to start a task on data on the same server,

or

- b) immediately start a new task in a farther away place that requires moving

data there.

 What Spark typically does is wait a bit in the hopes that a busy CPU frees up.

 Once that timeout expires, it starts moving the data from far away to the free

CPU.

 You should increase these settings if your tasks are long and see poor locality,

but the default usually works well.

 The best means of checking whether a task ran locally is to inspect a given

stage in the Spark UI.

 In the Stages tab of spark UI Locality Level column displays which locality a

given task ran with.

 Locality Level : PROCESS_LOCAL, NODE_LOCAL, RACK_LOCAL, or ANY

 pg. 11

SKILLCERTPRO

Kryo serialization

https://spark.apache.org/docs/latest/tuning.html#data-serialization

 ***For most programs, switching to Kryo serialization and persisting data in

serialized form will solve most common performance issues

a.11 Job Scheduling

 http://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-

an-application

a.12 Spark Security

 http://spark.apache.org/docs/latest/security.html

a.13 Hardware Provisioning

https://spark.apache.org/docs/latest/tuning.html#data-serialization
http://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
http://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
http://spark.apache.org/docs/latest/security.html

 pg. 12

SKILLCERTPRO

 http://spark.apache.org/docs/latest/hardware-provisioning.html

a.14 Shuffles

 http://hydronitrogen.com/apache-spark-shuffles-explained-in-depth.html

a.15 Partitioning

 https://medium.com/parrot-prediction/partitioning-in-apache-spark-

8134ad840b0

 https://techmagie.wordpress.com/2015/12/19/understanding-spark-

partitioning/

 https://www.talend.com/blog/2018/03/05/intro-apache-spark-partitioning-

need-know/

o Every node in a Spark cluster contains one or more partitions.

o too few (causing less concurrency, data skewing & improper resource

utilization)

o too many (causing task scheduling to take more time than actual

execution time)

o By default, it is set to the total number of cores on all the executor

nodes.

o Partitions in Spark do not span multiple machines.

o Tuples in the same partition are guaranteed to be on the same

machine.

o Spark assigns one task per partition and each worker can process one

task at a time.

b. WEB UI / Spark UI

spark web ui

https://www.cloudera.com/documentation/enterprise/5-9-

x/topics/operation_spark_applications.html

 A job can be in a running, succeeded, failed or unknown state.
 JOBS --> STAGES --> TASKS

Below tabs from spark UI

http://spark.apache.org/docs/latest/hardware-provisioning.html
http://hydronitrogen.com/apache-spark-shuffles-explained-in-depth.html
https://medium.com/parrot-prediction/partitioning-in-apache-spark-8134ad840b0
https://medium.com/parrot-prediction/partitioning-in-apache-spark-8134ad840b0
https://techmagie.wordpress.com/2015/12/19/understanding-spark-partitioning/
https://techmagie.wordpress.com/2015/12/19/understanding-spark-partitioning/
https://www.talend.com/blog/2018/03/05/intro-apache-spark-partitioning-need-know/
https://www.talend.com/blog/2018/03/05/intro-apache-spark-partitioning-need-know/
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-webui.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/operation_spark_applications.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/operation_spark_applications.html

 pg. 13

SKILLCERTPRO

i. JOBS tab : The Jobs tab consists of two pages, i.e. All Jobs and Details

for Job pages.

ii. STAGES tab:

o Stages tab in web UI shows the current state of 'all stages of all jobs' in

a Spark application (i.e. a SparkContext)

o two optional pages for the tasks and statistics for a stage (when a stage

is selected) and pool details (when the application works in FAIR

scheduling mode).

o Summary Metrics :

 for Completed Tasks in Stage : The summary metrics table shows

the metrics for the tasks in a given stage that have already

finished with SUCCESS status and metrics available.

 The table consists of the following columns: Metric, Min, 25th

percentile, Median, 75th percentile, Max.

iii. STORAGE tab :

o When created, StorageTab creates the following pages and attaches

them immediately: A. StoragePage B.RDDPage

o All Stages Page: shows the task details for a stage given its id and

attempt id.

o Stagev Details page / The Fair Scheduler Pool Details page : shows

information about a Schedulable pool and is only available when a

Spark application uses the FAIR scheduling mode (which is controlled

by spark.scheduler.mode setting).

iv. ENVIRONMENT tab: Shows various details like total tasks, Input,

Shuffle read & write, etc

 pg. 14

SKILLCERTPRO

v. EXECUTORS tab : list all executors used

o Input - total data processed or read by the application from hadoop or

spark storage

o Storage Memory - tatal memory used or available

vi. SQL tab: SQL tab in web UI shows SQLMetrics per physical operator in

a structured query physical plan.

o By default, it displays all SQL query executions.

o However, after a query has been selected, the SQL tab displays the

details for the structured query execution

c. RDD + DataFrame + DataSets + SparkSQL

http://spark.apache.org/docs/latest/rdd-programming-guide.html

http://spark.apache.org/docs/latest/sql-programming-guide.html

 Internally, each RDD is characterized by 5 main properties:

o

a. A list of partitions

o

b. A function for computing each split

o

c. A list of dependencies on other RDDs

o

d. Optionally, a Partitioner for key-value RDDs (e.g. to say that the

RDD is hash-partitioned)

o

e. Optionally, a list of preferred locations to compute each split on

(e.g. block locations for an HDFS file)

 Types of RDD

 type based on how RDDs made

 HadoopRDD, FilterRDD, MapRDD, ShuffleRDD, S3RDD , etc

http://spark.apache.org/docs/latest/rdd-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html

 pg. 15

SKILLCERTPRO

d. Streaming

https://spark.apache.org/docs/latest/streaming-programming-guide.html

e. SparkMLLib

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-

mllib.html

f. GraphLib

https://spark.apache.org/docs/latest/graphx-programming-guide.html

4. NOTES FROM THE BOOKS / GUIDES.

4.1 Learning Spark: Lightning-Fast Big Data

Introduction to Data Analysis with Spark

 cluster computing platform

 Spark application consists of a driver program that launches various parallel

operations on a cluster.

 driver programs typically manage a number of nodes called executors

 SparkContext represents a connection to a computing cluster.

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-mllib.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-mllib.html
https://spark.apache.org/docs/latest/graphx-programming-guide.html

 pg. 16

SKILLCERTPRO

Programming with RDDs

 Resilient Distributed Dataset (RDD)

 an immutable distributed collection of objects

 It split into multiple partitions, which may be computed on different nodes of

the cluster

 Transformations construct a new RDD from a previous one.

 Actions, on the other hand, compute a result based on an RDD, and either

return it to the driver program or save it to an external storage system

 lazy evaluation - Spark only computes them in a lazy fashion

 to reuse an RDD in multiple actions, you can ask Spark to persist it using

RDD.persist().

 three options for passing functions into Spark - lambda. top level function or

locally define functions

 reduce / fold

Working with Key-Value Pairs

 RDDs containing key-value pairs. These RDDs are called Pair RDDs.

 Transformations one pair rdd : reduceByKey / foldByKey, combineByKey,

countByValue, groupByKey, mapValues, flatMapValues, keys, values, sortByKey

 pg. 17

SKILLCERTPRO

 Transformations on two pair rdd : substractByKey, join, rightOuterJoin,

leftOuterJoin, cogroup

 Actions : collectAsMap(), lookup()

 Most operator accept a second parameter giving the number of partitions to

use when creating the grouped or aggregated RDD

 repartitioning your data is a fairly expensive operation

 Partitioning will not be helpful in all applications — for example, if a given

RDD is only scanned once, there is no point in partitioning it in advance. It is

only useful when a dataset is reused multiple times in key-oriented operations

such as joins.

 partitionBy

 HashPartitioner

Loading and Saving Your Data

 Comprassion optison : gzip, lzo, bzip2, zlib, Snappy

Advanced Spark Programming

 accumulators to aggregate information.

 One of the most common uses of accumulators is to count events that occur

during job execution for debugging purposes.

 Note that tasks on worker nodes cannot access the accumulator’s value —

from the point of view of these tasks, accumulators are write-only variables.

 speculative execution Spark can preemptivley launch a “speculative” copy of

the task on another node, and take its result if that finishes.

 accumulators updated in actions vs in transformations

 broadcast variables to efficiently distribute large values. allow the program to

efficiently send a large, read-only value to all the worker nodes for use in one

or more Spark operations.

 PrePartition operations: mapPartition, foreachPartition,

mapPartitionWithIndex

Running on a Cluster

 When running in cluster mode, Spark utilizes a master-slave architecture with

one central coordinator and many distributed workers.

 The central coordinator is called the driver.

 The driver communicates with potentially larger number of distributed

workers called executors.

 pg. 18

SKILLCERTPRO

 The driver runs in its own Java process and each executor is a Java process.

 A driver and its executors are together termed a Spark application.

 A Spark application is launched on a set of machines using an external service

called a cluster manager.

 Driver program main duties :

o a. compiling user program into task

o b. scheduling task on executor

 Executor

o a. running the tasks

o b. in-memory storage for rdd

 Sparks Dirver & Executor VS YARNs Master & Worker

o For instance Apache YARN runs a master daemon (called the Resource

Manager) and several worker daemons called (Node Managers).

o Spark will run both drivers and executors on YARN worker nodes.

 spark2-submit options types :

o The first is the location of the cluster manager along with an amount of

resources you’d like to request for your job (as shown above).

o The second is information about the runtime dependencies of your

application, such as libraries or files you want to be present on all

worker machines.

4.2 High Performance Spark - Holden Karau and

Rachel Warren

Spark Model of Parallel Computing: RDDs

 driver (or master node) perform operations on data in parallel.

 Spark represents large datasets as RDDs, immutable distributed collections of

objects,

 which are stored in the executors or (slave nodes).

 The objects that comprise RDDs are called partitions

 Partitions may be (but do not need to be) computed on different nodes of a

distributed system.

 Spark can keep an RDD loaded in memory on the executor nodes throughout

the life of a Spark application for faster access

 RDDs are immutable, so transforming an RDD returns a new RDD rather than

the existing one.

 Actions trigger the scheduler, which builds a directed acyclic graph (called the

DAG), based on the dependencies between RDD transformations.

 pg. 19

SKILLCERTPRO

 Then, using this series of steps called the execution plan, the scheduler

computes the missing partitions for each stage until it computes the whole

RDD.

In Memory Storage and Memory Management

 Spark offers three options for memory management:

o in memory deserialized data - higher performace but consume high

memory

o in memory as serialized data - slower performance but low disk space

o on disk - slower and nothing in memory, can be more fault tolarent for

long string transformations

 The persist() function in the RDD class lets the user control how the RDD is

stored.

 By default, persist() stores an RDD as deserialized objects in memory.

five main properties to represent an RDD internally.

 partitions()

 iterator(p, parentIters)

 dependencies()

 partitioner()

 preferredLocations(p)

Resource Allocation Across Applications

 static allocation

 dynamic allocation

The Anatomy of a Spark Job

spark application -> jobs -> stages -> tasks

 jobs

o highest element of Spark’s execution hierarchy.

o Each Spark job corresponds to one action

 stages

o As mentioned above, a job is defined by calling an action.

o The action may include several transformations, which breakdown of

jobs into stages.

 pg. 20

SKILLCERTPRO

o Several transformations with narrow dependencies can be grouped into

one stage.

o It is possible to executed stages in parallel if they are used to compute

different RDDs

o wide transformations needed to compute one RDD have to be

computed in sequence

o one stage can be computed without moving data across the partitions.

o Within one stage, the tasks are the units of work done for each

partition of the data.

 tasks

o A stage consists of tasks.

o The task is the smallest unit in the execution hierarchy

o each can represent one local computation.

o One task cannot be executed on more than one executor.

o However, each executor has a dynamically allocated number of slots for

running tasks

o The number of tasks per stage corresponds to the number of partitions

in the output RDD of that stage.

Spark SQL’s column operators are defined on the column class, so a filter containing

the expression 0 >= df.col("friends") will not compile since Scala will use the >=

defined on 0. Instead you would write df.col("friend") <= 0 or convert 0 to a column

literal with lit

 Transformations : types

o filters

o sql standard functions

o 'when' - for if then else

o Specialized DataFrame Transformations for Missing & Noisy Data

o Beyond Row-by-Row Transformations

o Aggregates and groupBy - agg API

o windowing

o sorting - orderBy

o Multi DataFrame Transformations

 Tungsten

o Tungsten is a new Spark SQL component that provides more efficient

Spark operations by working directly at the byte level.

 pg. 21

SKILLCERTPRO

o Tungsten includes specialized in-memory data structures tuned for the

type of operations required by Spark

o improved code generation, and a specialized wire protocol.

 Query Optimizer

o Catalyst is the Spark SQL query optimizer,

o which is used to take the query plan and transform it into an execution

plan that Spark can run.

o Much as our transformations on RDDs build up a DAG, Spark SQL

builds up a tree representing our query plan, called a logical plan.

o Spark is able to apply a number of optimizations on the logical plan

o also choose between multiple physical plans for the same logical plan

using a cost-based mode.

Joins (SQL & Core)

 In order to join data, Spark needs the data that is to be joined to live on the

same partition.

 The default implementation of join in Spark is a shuffled hash join.

 Shuffel could be avoided if

o

a. Both RDDs have a known partitioner.

o

b. map side join -One of the datasets is small enough to fit in

memory, in which case we can do a broadcast hash join

 Left semi joins

o are the only kind of join which only has values from the left table.

o A left semi join is the same as filtering the left table for only rows with

keys present in the right table.
o df1.join(df2, df1("name") === df2("name"), "leftsemi")

 Broadcast Hash Joins

o df1.join(broadcast(df2), "key")

o Spark also automatically uses the

spark.sql.conf.autoBroadcastJoinThreshold to determine if a table

should be broadcast.

4.5 "Programming Guides"

from http://spark.apache.org/docs/latest/

http://spark.apache.org/docs/latest/

 pg. 22

SKILLCERTPRO

Passing Functions to Spark

 There are three recommended ways to do this:

o Lambda expressions. Lambdas do not support multi-statement

functions or statements that do not return a value.)

o Local defs inside the function calling into Spark, for longer code.

o Top-level functions in a module.

o method in a class instance (as opposed to a singleton object), this

requires sending the object that contains that class along with the

method.

o

Lading any external files to spark dataframe : spark.read.load /

spark.read

df_json = spark.read.load("FILE_LOCATION.json",format="json)
df_csv = spark.read.load("FILE_LOCATION.csv", format="csv", sep=",", inferSchema =
"true", header = "true")
df_parquet = spark.read.parquet("FILE_LOCATION.parquet")
df_jdbc = spark.read \
 .format("jdbc") \
 .option("url", "jdbc:postgresql:dbserver") \
 .option("dbtable", "schema.tablename") \
 .option("user", "username") \
 .option("password", "password") \
 .load()

Writing data to external : sdf.write.save &

write.option("path":"DIR_LOCATION").saveAsTable("tble1")

 .saveAsTable("tble1") : For file-based data source, e.g. text, parquet, json, etc.

you can specify a custom table path via the path option. When the table is

dropped, the custom table path will not be removed and the table data is still

there.

sdf.write.parquet("DIR_LOCATION")
sdf.write.save(FILE_LOCATION.parquet)

 partitionBy creates a directory structure as described in the Partition

Discovery section. columns with high cardinality.

 bucketBy distributes data across a fixed number of buckets and can be used

when a number of unique values is unbounded.

df.write
 .partitionBy("favorite_color")
 .bucketBy(42, "name")

 pg. 23

SKILLCERTPRO

 .saveAsTable("people_partitioned_bucketed")

Schema Merging

 Like ProtocolBuffer, Avro, and Thrift, Parquet also supports schema evolution.

Users can start with a simple schema, and gradually add more columns to the

schema as needed.

 In this way, users may end up with multiple Parquet files with different but

mutually compatible schemas.

 The Parquet data source is now able to automatically detect this case and

merge schemas of all these files.

spark.read.option("mergeSchema", "true").parquet("FOLDER_LOCATION")

Parquet Files

 Parquet is a columnar format that is supported by many other data processing

systems.

 Spark SQL provides support for both reading and writing Parquet files that

automatically preserves the schema of the original data.

 When writing Parquet files, all columns are automatically converted to be

nullable for compatibility reasons.

HIVE vs Parquet

 Hive is case insensitive, while Parquet is not

 Hive considers all columns nullable, while nullability in Parquet is significant

Best way to load data from URL to spark - Pandas

#Example to load csv
import pandas as pd
sdf =
spark.createDataFrame(pd.read_csv("https://raw.githubusercontent.com/fivethirtyeig
ht/data/master/airline-safety/airline-safety.csv"))

Pandas in spark

 Scalar Pandas UDFs are used for vectorizing scalar operations.

 They can be used with functions such as select and withColumn

 toPandas() will convert the Spark DataFrame into a Pandas DataFrame, which

is of course in memory.

 pg. 24

SKILLCERTPRO

def multi_fun(a, b):
 return a * b

x = pd.Series([1,2,3,4])
multi = pandas_udf(multi_fun,returnType=LongType())
sdf= spark.createDataFrame(pd.DataFrame(x, columns=["x"]))
sdf.select(multi(col("x"),col("x"))).show()

Grouped Map on Pandas df : Split-apply-combine

 Grouped map Pandas UDFs are used with groupBy().apply() which implements

the “split-apply-combine” pattern.

 Split-apply-combine consists of three steps:

o Split the data into groups by using DataFrame.groupBy.

o Apply a function on each group. The input data contains all the rows

and columns for each group.

o Combine the results into a new DataFrame.

from pyspark.sql.functions import pandas_udf, PandasUDFType

sdf_grp = spark.createDataFrame([(1,10),(2,10),(3,30)],("id","v"))

@pandas_udf("id integer, v double", PandasUDFType.GROUPED_MAP)
def fun_1(pdf):
 v = pdf.v
 return pdf.assign(v = v - v.mean())

sdf_grp.groupBy("id").apply(fun_1).show()

Arrow : JVM to Python data xfer

 Apache Arrow is an in-memory columnar data format.

 that is used in Spark to efficiently transfer data between JVM and Python

processes

 good with Pandas/NumPy data.

 PyArrow - pip install pyspark[sql]

 ***‘spark.sql.execution.arrow.enabled’ to ‘true’

NaN

 There is specially handling for not-a-number (NaN)

 when dealing with float or double types that does not exactly match standard

floating point semantics.

5. SPARKSESSION & PYSPARK.SQL.FUNCTIONS f

 pg. 25

SKILLCERTPRO

http://spark.apache.org/docs/2.2.0/api/python/pyspark.sql.html

 functions could be passed to API to perform operations

 like aggregate functions used with 'agg' API

from pyspark.sql import functions f

lit()

Creates a Column of literal value

df.withColumn("col1", f.when("col2") == 0, f.lit("Y")).otherwise(f.lit("N")))

monotonically_increasing_id()

A column that generates monotonically increasing 64-bit integers. monotonically

increasing and unique, but not consecutive.

df.withColumn("new_id", f.monotonically_increasing_id())

SparkSession.table()

Returns the specified table as a DataFrame.

expr()

Parses the expression string into the column that it represents

col_condn = f.exppr("if(col is null, 1,0)")
df.withColumn("col1",col_condn)

JOIN

http://www.learnbymarketing.com/1100/pyspark-joins-by-example/

https://spark.apache.org/docs/2.3.0/api/python/pyspark.sql.html

https://spark.apache.org/docs/2.3.0/api/python/_modules/pyspark/sql/dataframe.ht

ml#DataFrame.join

df_res = df_one.join(df_two,df_one.col1 == df_two.col1,"left")
df_res = df_one.join(other=df_two,on=["col1"],how="left")
df_res = df_one.alias("a").join(df_two.alias("b"),col("a.col1") ==
col("b.col1"),"left")

 (inner, outer, left_outer, right_outer, leftsemi)

 Join takes three parameters: DataFrame on the right side of the join, Which

fields are being joined on, and what type of join

http://spark.apache.org/docs/2.2.0/api/python/pyspark.sql.html
http://www.learnbymarketing.com/1100/pyspark-joins-by-example/
https://spark.apache.org/docs/2.3.0/api/python/pyspark.sql.html
https://spark.apache.org/docs/2.3.0/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.join
https://spark.apache.org/docs/2.3.0/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.join

 pg. 26

SKILLCERTPRO

 An inner join is the default join type used

 default inner. Must be one

of: inner, cross, outer, full, full_outer, left, left_outer, right, right_outer, lef

t_semi, and left_anti

 ‘leftsemi’ if you care only for the left columns and just want to pull in the

records that match in both table A and table B, y

distinct()

https://stackoverflow.com/questions/30959955/how-does-distinct-function-work-in-

spark

 shuffle data accross partition

dataFrame.checkpoint

https://dzone.com/articles/what-are-spark-checkpoints-on-dataframes

https://stackoverflow.com/questions/35127720/what-is-the-difference-between-

spark-checkpoint-and-persist-to-a-disk

 Returns a checkpointed version of this dataset.

 Checkpointing can be used to truncate the logical plan of this dataset,

which is especially useful in iterative algorithms where the plan may grow

exponentially.

 It will be saved to files inside the checkpoint directory set with

SparkContext#setCheckpointDir.

 types : Eager Checkpoint & Non-Eager Checkpoint

 eager – Whether to checkpoint this DataFrame immediately

df.checkpoint

pyspark.sql.window

https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-

sql.html

window_condn = window \
 .partitionby(df.col_date) \
 .rangeBetween(min_val, max_val) \

https://stackoverflow.com/questions/30959955/how-does-distinct-function-work-in-spark
https://stackoverflow.com/questions/30959955/how-does-distinct-function-work-in-spark
https://dzone.com/articles/what-are-spark-checkpoints-on-dataframes
https://stackoverflow.com/questions/35127720/what-is-the-difference-between-spark-checkpoint-and-persist-to-a-disk
https://stackoverflow.com/questions/35127720/what-is-the-difference-between-spark-checkpoint-and-persist-to-a-disk
https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html
https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html

 pg. 27

SKILLCERTPRO

 .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
\
 .OrderBy(df.col_date)

df_new = df.withColumn('col1',f.sum('col2')).over(window_condn)

df.pivote

https://databricks.com/blog/2016/02/09/reshaping-data-with-pivot-in-apache-

spark.html

 Pivots a column of the current DataFrame and perform the specified

aggregation.

 There are two versions of pivot function: one that requires the caller to specify

the list of distinct values to pivot on, and one that does not.

 The latter is more concise but less efficient, because Spark needs to first

compute the list of distinct values internally.

f.explode(col)

Returns a new row for each element in the given array or map.

new_df = df.select(f.explode(df.col1))

df.groupBy(*cols)

Groups the DataFrame using the specified columns, so we can run aggregation on

them. See GroupedData for all the available aggregate functions.

df.groupBy(df.col1).count().collect()

df.agg(*expr)

Aggregate on the entire DataFrame without groups (shorthand for df.groupBy.agg()).

df.groupBy(df.col1).agg(a.max(df.col1))

 get non groupby cols in df

pyspark.sql.functions import collect_set
df.groupBy(df.col1).agg(a.collect_set(df.col2))

col1 collect_set(col2)
1 [2,3]
5 [7,9]

pyspark.sql.types.ArrayType

https://databricks.com/blog/2016/02/09/reshaping-data-with-pivot-in-apache-spark.html
https://databricks.com/blog/2016/02/09/reshaping-data-with-pivot-in-apache-spark.html

 pg. 28

SKILLCERTPRO

from pyspark.sql.functions import udf
@udf(returnType=ArrayType(StringType()))
def func_test_udf(a):
 return []

 new_df = df.withColumn("new_col", func_test_udf(df.col1))

An error occurred while calling
None.org.apache.spark.sql.execution.python.UserDefinedPythonFunction. Trace:
class org.apache.spark.sql.types.ArrayType]) does not exist

df.filter()

df_new = df.filter(col("col1").isNotNull & col("col1") > 100)

f.first(col)

Aggregate function: returns the first value in a group.

df.distinct()

df.select("abc").distinct()

add / remove cols

sdf.withColumn("new_col",lit(1))

sdf.drop("new_col)

eqNullSafe

 include NULL values in the join

sdf_1.join(sdf_2,sdf_1.col_1.eqNullSafe(sdf_2.col_1))

RDD , partition , tasks etc..

https://qubole.zendesk.com/hc/en-us/articles/217111026-Reference-Relationship-

between-Partitions-Tasks-Cores

 # of Spark RDD / Data Frame Partitions = Result of Partitioning Logic for
Spark Function

 For the first task this is driven by the number of files in the source: # of Tasks
required for Stage = # of Source Partitions

 For the subsequent tasks this is driven by the number of partitions from the

prior stages: # of Tasks required for Stage = # of Spark RDD / Data Frame
Partitions

https://qubole.zendesk.com/hc/en-us/articles/217111026-Reference-Relationship-between-Partitions-Tasks-Cores
https://qubole.zendesk.com/hc/en-us/articles/217111026-Reference-Relationship-between-Partitions-Tasks-Cores

 pg. 29

SKILLCERTPRO

Disclaimer: All data and information provided on this site is for informational

purposes only. This site makes no representations as to accuracy, completeness,

correctness, suitability, or validity of any information on this site & will not be

liable for any errors, omissions, or delays in this information or any losses,

injuries, or damages arising from its display or use. All information is provided on

an as-is basis.

