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Databricks Apache Spark Certified 

Developer Master Cheat Sheet 

https://databricks.com/training/certified-spark-developer 

Index 

 1. GENERAL IMP LINKS 

 2. POINTS TO CONSIDER 

 3. COURSE TOPICS 

o a. Spark Concept 

o b. WEB UI / Spark UI 

o c. RDD + DataFrame + DataSets + SparkSQL 

o d. Streaming 

o e. SparkMLLib 

o f. GraphLib 

 4. NOTES FROM THE BOOKS / GUIDES. 

o 4.1 Learning Spark: Lightning-Fast Big Data 

o 4.2 High Performance Spark - Holden Karau and Rachel Warren 

o 4.3 Machine Learning with Spark: Nick Pentreath 

o 4.4 https://databricks.gitbooks.io/databricks-spark-knowledge-

base/content/ 

o 4.5 Programming Guides from http://spark.apache.org/docs/latest/ 

 5. SPARKSESSION & PYSPARK.SQL.FUNCTIONS f 

1. GENERAL IMP LINKS 

Free online clusters for quick start Spark exercises! 

 databricks - free 6GB cluster with preinstall spark and relavent dependencies 

for notebooks 

 zepl - limited resource spark non distributed notebooks 

 colab - from google 

 Kaggle Kernals (Kaggle kernal > Internet On ; ! Pip install pyspark) 

spark on Google colab 

https://databricks.com/training/certified-spark-developer
https://community.cloud.databricks.com/
https://community.cloud.databricks.com/
https://www.zepl.com/
https://colab.research.google.com/
https://www.kaggle.com/kernels
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!apt-get install openjdk-8-jdk-headless -qq > /dev/null 
!wget -q http://apache.osuosl.org/spark/spark-2.3.1/spark-2.3.1-bin-hadoop2.7.tgz 
# latest spark binary 
 
!tar xf spark-2.3.1-bin-hadoop2.7.tgz 
!pip install -q findspark 
 
import os 
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" 
os.environ["SPARK_HOME"] = "/content/spark-2.3.1-bin-hadoop2.7" 
 
import findspark 
findspark.init() 
from pyspark.sql import SparkSession 
spark = SparkSession.builder.master("local[*]").getOrCreate() 
 

spark on Kaggle Kernals 

!pip install pyspark 
 
from pyspark.sql import SparkSession 
spark = SparkSession.builder.master("local[*]").getOrCreate() 
spark 

 

References: 

 

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/ 

https://www.slideshare.net/cloudera/top-5-mistakes-to-avoid-when-writing-apache-

spark-applications 

https://pages.databricks.com/rs/094-YMS-629/images/7-steps-for-a-developer-to-

learn-apache-spark.pdf 

https://docs.databricks.com/spark/latest/gentle-introduction/index.html 

http://www.bigdatatrunk.com/developer-certification-for-apache-spark-databricks/ 

2. POINTS TO CONSIDER 

 40 questions, 90 minutes 

 70% programming Scala, Python and Java, 30% are theory. 

 Orielly learning spark : Chapter’s 3,4 and 6 for 50% ; Chapters 8,9(IMP) and 10 

for 30% 

 Programming Languages (Certifications will be offered in Scala or Python) 

 Some experience developing Spark apps in production already 

 Developers must be able to recognize the code that is more parallel, and less 

memory constrained. They must know how to apply the best practices to 

avoid run time issues and performance bottlenecks. 

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/
https://www.slideshare.net/cloudera/top-5-mistakes-to-avoid-when-writing-apache-spark-applications
https://www.slideshare.net/cloudera/top-5-mistakes-to-avoid-when-writing-apache-spark-applications
https://pages.databricks.com/rs/094-YMS-629/images/7-steps-for-a-developer-to-learn-apache-spark.pdf
https://pages.databricks.com/rs/094-YMS-629/images/7-steps-for-a-developer-to-learn-apache-spark.pdf
https://docs.databricks.com/spark/latest/gentle-introduction/index.html
http://www.bigdatatrunk.com/developer-certification-for-apache-spark-databricks/
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3. COURSE TOPICS 

a. Spark Concept 
 

http://spark.apache.org/ 

https://databricks.gitbooks.io/databricks-spark-reference-

applications/content/index.html 

https://thachtranerc.wordpress.com/2017/07/10/databricks-developer-certifcation-

for-apache-spark-finally-i-made-it/ 

videos : 

https://www.youtube.com/watch?v=7ooZ4S7Ay6Y 

https://www.youtube.com/watch?v=tFRPeU5HemU 

http://spark.apache.org/
https://databricks.gitbooks.io/databricks-spark-reference-applications/content/index.html
https://databricks.gitbooks.io/databricks-spark-reference-applications/content/index.html
https://thachtranerc.wordpress.com/2017/07/10/databricks-developer-certifcation-for-apache-spark-finally-i-made-it/
https://thachtranerc.wordpress.com/2017/07/10/databricks-developer-certifcation-for-apache-spark-finally-i-made-it/
https://www.youtube.com/watch?v=7ooZ4S7Ay6Y
https://www.youtube.com/watch?v=tFRPeU5HemU
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 a.1 Spark code breakdown to optimizer
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 a.2 pySpark ML pipeline breakdown 

 

 a.3 Action[1] --> Job[1] --> Stages[n] --> Tasks[n] 

o new job is created on actions 

o new stages will be create if there is data shuffle in job. I.e. dependency 

on output of first stage 

o new tasks will be created based on number of partitions in RDD in 

cluster. 

rdd1 = sc.textFile("f1") #transformation - stage 1 
rdd2 = sc.textFile("f2")  #transformation - stage 2 
rdd3 = rdd1.join(rdd2) #transformation + shuffle - stage 3 
rdd4 = rdd3.mapPartition() #transformation - stage 3 
rdd5 = rdd4.filter() #transformation - stage 3 
rdd5.collect() #actions - stage 3 

 a.4 Spark Standalone Mode 

o In addition to running on the Mesos or YARN cluster managers, Spark 

also provides a simple standalone deploy mode. 

./bin/spark-shell --master spark://IP:PORT 
# URL of the master 

 a.5 supervise flag to spark-submit 
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o In standalone cluster mode supports restarting your application 

automatically if it exited with non-zero exit code. 
spark-submit --supervise ... 

 a.6 Dynamic Allocation 

o https://spark.apache.org/docs/latest/configuration.html#dynamic-

allocation 

o scales the number of executors registered with this application up and 

down based on the workload. 
o spark.dynamicAllocation.enabled 

 a.7 Speculative execution 

o spark.speculation 

o If set to "true", if one or more tasks are running slowly in a stage, they 

will be re-launched. 

 a.8 locality wait 

o spark.locality.wait 

o How long to wait to launch a data-local task before giving up and 

launching it on a less-local node. 

o The same wait will be used to step through multiple locality levels 

(process-local, node-local, rack-local and then any). 

o It is also possible to customize the waiting time for each level by setting 

spark.locality.wait.node, etc. 

o You should increase this setting if your tasks are long and see poor 

locality, but the default usually works well. 

a.10 Performance Tunning 

 http://spark.apache.org/docs/latest/tuning.html 

 when tuning a Spark application – most importantly, data serialization and 

memory tuning, CPU, network bandwidth, memory 

 Data Serialization: 

o Formats that are slow to serialize objects into, or consume a large 

number of bytes, will greatly slow down the computation. 

o Java serialization (default) 

o Kryo serialization: SparkConf and calling conf.set("spark.serializer", 

"org.apache.spark.serializer.KryoSerializer"). 

 Memory Tuning: 

https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
https://spark.apache.org/docs/latest/configuration.html#dynamic-allocation
http://spark.apache.org/docs/latest/tuning.html
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o the amount of memory used by your objects (you may want your entire 

dataset to fit in memory), 

o the cost of accessing those objects 

o the overhead of garbage collection (if you have high turnover in terms 

of objects). 

 Memory Management Overview : 

o two categories: execution and storage. 

o ***Execution memory refers to that used for computation in shuffles, 

joins, sorts and aggregations, 

o Storage memory refers to that used for caching and propagating 

internal data across the cluster. 

o When no execution memory is used, storage can acquire all the 

available memory and vice versa. 
o spark.memory.fraction 
o spark.memory.storageFraction 

 How Determining Memory Consumption 

 create an RDD, put it into cache, and look at the “Storage” page in the web UI 

 SizeEstimator’s estimate - consumption of a particular object 

 With cache(), you use only the default storage level MEMORY_ONLY. With 

persist(), you can specify which storage level you want. 

o MEMORY_ONLY 

o MEMORY_ONLY_SER 

o MEMORY_AND_DISK 

o MEMORY_AND_DISK_SER 

o DISK_ONLY 

 Tuning Data Structures 

o avoid the Java features that add overhead, such as pointer-based data 

structures and wrapper objects. 

o prefer arrays of objects, and primitive types, instead of the standard 

Java or Scala collection classes 

o Avoid nested structures with a lot of small objects and pointers when 

possible. 

o Consider using numeric IDs or enumeration objects instead of strings 

for keys. 
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 Serialized RDD Storage 

o When your objects are still too large to efficiently store despite this 

tuning, a much simpler way to reduce memory usage is to store them 

in serialized formt 

o Downside is performance hit, as it add overhead of deserialization 

every time 

 Garbage Collection Tuning 

 Level of Parallelism 

o Spark automatically sets the number of 

o “map” tasks to run on each file according to its size (though you can 

control it through optional parameters to SparkContext.textFile, etc), 

o and for distributed “reduce” operations, it uses the largest parent RDD’s 

number of partitions. 
o spark.default.parallelism 

o recommend 2-3 tasks per CPU core in your cluster. 

o You can safely increase the level of parallelism to more than the 

number of cores in your clusters. 

 Memory Usage of Reduce Tasks 

 Spark’s shuffle operations (sortByKey, groupByKey, reduceByKey, join, etc) 

build a hash table within each task to perform the grouping, which can often 

be large. 

 The simplest fix here is to increase the level of parallelism, so that each task’s 

input set is smaller 

 Broadcasting Large Variables 

o in general tasks larger than about 20 KB are probably worth optimizing. 

 Data Locality 

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-data-locality.html 

 If data and the code that operates on it are together then computation tends 

to be fast 

 Typically it is faster to ship serialized code from place to place than a chunk of 

data because code size is much smaller than data. - Spark builds its 

scheduling around this general principle of data locality. 

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-data-locality.html
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 Spark prefers to schedule all tasks at the best locality level, but this is not 

always possible. 

 In situations where there is no unprocessed data on any idle executor, Spark 

switches to lower locality levels. 

 There are two options: 

- a) wait until a busy CPU frees up to start a task on data on the same server, 

or 

- b) immediately start a new task in a farther away place that requires moving 

data there. 

 What Spark typically does is wait a bit in the hopes that a busy CPU frees up. 

 Once that timeout expires, it starts moving the data from far away to the free 

CPU. 

 You should increase these settings if your tasks are long and see poor locality, 

but the default usually works well. 

 The best means of checking whether a task ran locally is to inspect a given 

stage in the Spark UI. 

 In the Stages tab of spark UI Locality Level column displays which locality a 

given task ran with. 

 Locality Level : PROCESS_LOCAL, NODE_LOCAL, RACK_LOCAL, or ANY 



 

 pg. 11 

SKILLCERTPRO 

 

Kryo serialization 

https://spark.apache.org/docs/latest/tuning.html#data-serialization 

 ***For most programs, switching to Kryo serialization and persisting data in 

serialized form will solve most common performance issues 

a.11 Job Scheduling 

 http://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-

an-application 

  

a.12 Spark Security 

 http://spark.apache.org/docs/latest/security.html 

a.13 Hardware Provisioning 

https://spark.apache.org/docs/latest/tuning.html#data-serialization
http://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
http://spark.apache.org/docs/latest/job-scheduling.html#scheduling-within-an-application
http://spark.apache.org/docs/latest/security.html


 

 pg. 12 

SKILLCERTPRO 

 http://spark.apache.org/docs/latest/hardware-provisioning.html 

a.14 Shuffles 

 http://hydronitrogen.com/apache-spark-shuffles-explained-in-depth.html 

  

a.15 Partitioning 

 https://medium.com/parrot-prediction/partitioning-in-apache-spark-

8134ad840b0 

 https://techmagie.wordpress.com/2015/12/19/understanding-spark-

partitioning/ 

 https://www.talend.com/blog/2018/03/05/intro-apache-spark-partitioning-

need-know/ 

o Every node in a Spark cluster contains one or more partitions. 

o too few (causing less concurrency, data skewing & improper resource 

utilization) 

o too many (causing task scheduling to take more time than actual 

execution time) 

o By default, it is set to the total number of cores on all the executor 

nodes. 

o Partitions in Spark do not span multiple machines. 

o Tuples in the same partition are guaranteed to be on the same 

machine. 

o Spark assigns one task per partition and each worker can process one 

task at a time. 

b. WEB UI / Spark UI 

spark web ui 

https://www.cloudera.com/documentation/enterprise/5-9-

x/topics/operation_spark_applications.html 

 A job can be in a running, succeeded, failed or unknown state. 
 JOBS --> STAGES --> TASKS 

Below tabs from spark UI 

http://spark.apache.org/docs/latest/hardware-provisioning.html
http://hydronitrogen.com/apache-spark-shuffles-explained-in-depth.html
https://medium.com/parrot-prediction/partitioning-in-apache-spark-8134ad840b0
https://medium.com/parrot-prediction/partitioning-in-apache-spark-8134ad840b0
https://techmagie.wordpress.com/2015/12/19/understanding-spark-partitioning/
https://techmagie.wordpress.com/2015/12/19/understanding-spark-partitioning/
https://www.talend.com/blog/2018/03/05/intro-apache-spark-partitioning-need-know/
https://www.talend.com/blog/2018/03/05/intro-apache-spark-partitioning-need-know/
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-webui.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/operation_spark_applications.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/operation_spark_applications.html
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i. JOBS tab : The Jobs tab consists of two pages, i.e. All Jobs and Details 

for Job pages. 

  

ii. STAGES tab: 

o Stages tab in web UI shows the current state of 'all stages of all jobs' in 

a Spark application (i.e. a SparkContext) 

o two optional pages for the tasks and statistics for a stage (when a stage 

is selected) and pool details (when the application works in FAIR 

scheduling mode). 

o Summary Metrics : 

 for Completed Tasks in Stage : The summary metrics table shows 

the metrics for the tasks in a given stage that have already 

finished with SUCCESS status and metrics available. 

 The table consists of the following columns: Metric, Min, 25th 

percentile, Median, 75th percentile, Max. 

  

iii. STORAGE tab : 

o When created, StorageTab creates the following pages and attaches 

them immediately: A. StoragePage B.RDDPage 

o All Stages Page: shows the task details for a stage given its id and 

attempt id. 

o Stagev Details page / The Fair Scheduler Pool Details page : shows 

information about a Schedulable pool and is only available when a 

Spark application uses the FAIR scheduling mode (which is controlled 

by spark.scheduler.mode setting). 

  

iv. ENVIRONMENT tab: Shows various details like total tasks, Input, 

Shuffle read & write, etc 
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v. EXECUTORS tab : list all executors used 

o Input - total data processed or read by the application from hadoop or 

spark storage 

o Storage Memory - tatal memory used or available 

  

vi. SQL tab: SQL tab in web UI shows SQLMetrics per physical operator in 

a structured query physical plan. 

o By default, it displays all SQL query executions. 

o However, after a query has been selected, the SQL tab displays the 

details for the structured query execution 

c. RDD + DataFrame + DataSets + SparkSQL 

http://spark.apache.org/docs/latest/rdd-programming-guide.html 

http://spark.apache.org/docs/latest/sql-programming-guide.html 

 

 Internally, each RDD is characterized by 5 main properties: 

o  

a. A list of partitions 

o  

b. A function for computing each split 

o  

c. A list of dependencies on other RDDs 

o  

d. Optionally, a Partitioner for key-value RDDs (e.g. to say that the 

RDD is hash-partitioned) 

o  

e. Optionally, a list of preferred locations to compute each split on 

(e.g. block locations for an HDFS file) 

 Types of RDD 

 type based on how RDDs made 

 HadoopRDD, FilterRDD, MapRDD, ShuffleRDD, S3RDD , etc 

http://spark.apache.org/docs/latest/rdd-programming-guide.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
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d. Streaming 

https://spark.apache.org/docs/latest/streaming-programming-guide.html 

e. SparkMLLib 

https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-

mllib.html 

f. GraphLib 

https://spark.apache.org/docs/latest/graphx-programming-guide.html 

4. NOTES FROM THE BOOKS / GUIDES. 

4.1 Learning Spark: Lightning-Fast Big Data 

Introduction to Data Analysis with Spark 

 cluster computing platform 

 Spark application consists of a driver program that launches various parallel 

operations on a cluster. 

 driver programs typically manage a number of nodes called executors 

 SparkContext represents a connection to a computing cluster. 

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-mllib.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-mllib/spark-mllib.html
https://spark.apache.org/docs/latest/graphx-programming-guide.html
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Programming with RDDs 

 Resilient Distributed Dataset (RDD) 

 an immutable distributed collection of objects 

 It split into multiple partitions, which may be computed on different nodes of 

the cluster 

 Transformations construct a new RDD from a previous one. 

 Actions, on the other hand, compute a result based on an RDD, and either 

return it to the driver program or save it to an external storage system 

 lazy evaluation - Spark only computes them in a lazy fashion 

 to reuse an RDD in multiple actions, you can ask Spark to persist it using 

RDD.persist(). 

 three options for passing functions into Spark - lambda. top level function or 

locally define functions 

 reduce / fold 

Working with Key-Value Pairs 

 RDDs containing key-value pairs. These RDDs are called Pair RDDs. 

 Transformations one pair rdd : reduceByKey / foldByKey, combineByKey, 

countByValue, groupByKey, mapValues, flatMapValues, keys, values, sortByKey 
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 Transformations on two pair rdd : substractByKey, join, rightOuterJoin, 

leftOuterJoin, cogroup 

 Actions : collectAsMap(), lookup() 

 Most operator accept a second parameter giving the number of partitions to 

use when creating the grouped or aggregated RDD 

 repartitioning your data is a fairly expensive operation 

 Partitioning will not be helpful in all applications — for example, if a given 

RDD is only scanned once, there is no point in partitioning it in advance. It is 

only useful when a dataset is reused multiple times in key-oriented operations 

such as joins. 

 partitionBy 

 HashPartitioner 

Loading and Saving Your Data 

 Comprassion optison : gzip, lzo, bzip2, zlib, Snappy 

Advanced Spark Programming 

 accumulators to aggregate information. 

 One of the most common uses of accumulators is to count events that occur 

during job execution for debugging purposes. 

 Note that tasks on worker nodes cannot access the accumulator’s value — 

from the point of view of these tasks, accumulators are write-only variables. 

 speculative execution Spark can preemptivley launch a “speculative” copy of 

the task on another node, and take its result if that finishes. 

 accumulators updated in actions vs in transformations 

 broadcast variables to efficiently distribute large values. allow the program to 

efficiently send a large, read-only value to all the worker nodes for use in one 

or more Spark operations. 

 PrePartition operations: mapPartition, foreachPartition, 

mapPartitionWithIndex 

Running on a Cluster 

 When running in cluster mode, Spark utilizes a master-slave architecture with 

one central coordinator and many distributed workers. 

 The central coordinator is called the driver. 

 The driver communicates with potentially larger number of distributed 

workers called executors. 
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 The driver runs in its own Java process and each executor is a Java process. 

 A driver and its executors are together termed a Spark application. 

 A Spark application is launched on a set of machines using an external service 

called a cluster manager. 

 Driver program main duties : 

o a. compiling user program into task 

o b. scheduling task on executor 

 Executor 

o a. running the tasks 

o b. in-memory storage for rdd 

 Sparks Dirver & Executor VS YARNs Master & Worker 

o For instance Apache YARN runs a master daemon (called the Resource 

Manager) and several worker daemons called (Node Managers). 

o Spark will run both drivers and executors on YARN worker nodes. 

 spark2-submit options types : 

o The first is the location of the cluster manager along with an amount of 

resources you’d like to request for your job (as shown above). 

o The second is information about the runtime dependencies of your 

application, such as libraries or files you want to be present on all 

worker machines. 

4.2 High Performance Spark - Holden Karau and 

Rachel Warren 

Spark Model of Parallel Computing: RDDs 

 driver (or master node) perform operations on data in parallel. 

 Spark represents large datasets as RDDs, immutable distributed collections of 

objects, 

 which are stored in the executors or (slave nodes). 

 The objects that comprise RDDs are called partitions 

 Partitions may be (but do not need to be) computed on different nodes of a 

distributed system. 

 Spark can keep an RDD loaded in memory on the executor nodes throughout 

the life of a Spark application for faster access 

 RDDs are immutable, so transforming an RDD returns a new RDD rather than 

the existing one. 

 Actions trigger the scheduler, which builds a directed acyclic graph (called the 

DAG), based on the dependencies between RDD transformations. 
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 Then, using this series of steps called the execution plan, the scheduler 

computes the missing partitions for each stage until it computes the whole 

RDD. 

In Memory Storage and Memory Management 

 Spark offers three options for memory management: 

o in memory deserialized data - higher performace but consume high 

memory 

o in memory as serialized data - slower performance but low disk space 

o on disk - slower and nothing in memory, can be more fault tolarent for 

long string transformations 

 The persist() function in the RDD class lets the user control how the RDD is 

stored. 

 By default, persist() stores an RDD as deserialized objects in memory. 

five main properties to represent an RDD internally. 

 partitions() 

 iterator(p, parentIters) 

 dependencies() 

 partitioner() 

 preferredLocations(p) 

Resource Allocation Across Applications 

 static allocation 

 dynamic allocation 

The Anatomy of a Spark Job 

spark application -> jobs -> stages -> tasks 

 jobs 

o highest element of Spark’s execution hierarchy. 

o Each Spark job corresponds to one action 

 stages 

o As mentioned above, a job is defined by calling an action. 

o The action may include several transformations, which breakdown of 

jobs into stages. 
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o Several transformations with narrow dependencies can be grouped into 

one stage. 

o It is possible to executed stages in parallel if they are used to compute 

different RDDs 

o wide transformations needed to compute one RDD have to be 

computed in sequence 

o one stage can be computed without moving data across the partitions. 

o Within one stage, the tasks are the units of work done for each 

partition of the data. 

 tasks 

o A stage consists of tasks. 

o The task is the smallest unit in the execution hierarchy 

o each can represent one local computation. 

o One task cannot be executed on more than one executor. 

o However, each executor has a dynamically allocated number of slots for 

running tasks 

o The number of tasks per stage corresponds to the number of partitions 

in the output RDD of that stage. 

Spark SQL’s column operators are defined on the column class, so a filter containing 

the expression 0 >= df.col("friends") will not compile since Scala will use the >= 

defined on 0. Instead you would write df.col("friend") <= 0 or convert 0 to a column 

literal with lit 

 Transformations : types 

o filters 

o sql standard functions 

o 'when' - for if then else 

o Specialized DataFrame Transformations for Missing & Noisy Data 

o Beyond Row-by-Row Transformations 

o Aggregates and groupBy - agg API 

o windowing 

o sorting - orderBy 

o Multi DataFrame Transformations 

 Tungsten 

o Tungsten is a new Spark SQL component that provides more efficient 

Spark operations by working directly at the byte level. 
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o Tungsten includes specialized in-memory data structures tuned for the 

type of operations required by Spark 

o improved code generation, and a specialized wire protocol. 

 Query Optimizer 

o Catalyst is the Spark SQL query optimizer, 

o which is used to take the query plan and transform it into an execution 

plan that Spark can run. 

o Much as our transformations on RDDs build up a DAG, Spark SQL 

builds up a tree representing our query plan, called a logical plan. 

o Spark is able to apply a number of optimizations on the logical plan 

o also choose between multiple physical plans for the same logical plan 

using a cost-based mode. 

Joins (SQL & Core) 

 In order to join data, Spark needs the data that is to be joined to live on the 

same partition. 

 The default implementation of join in Spark is a shuffled hash join. 

 Shuffel could be avoided if 

o  

a. Both RDDs have a known partitioner. 

o  

b. map side join -One of the datasets is small enough to fit in 

memory, in which case we can do a broadcast hash join 

 Left semi joins 

o are the only kind of join which only has values from the left table. 

o A left semi join is the same as filtering the left table for only rows with 

keys present in the right table. 
o df1.join(df2, df1("name") === df2("name"), "leftsemi") 

 Broadcast Hash Joins 

o df1.join(broadcast(df2), "key") 

o Spark also automatically uses the 

spark.sql.conf.autoBroadcastJoinThreshold to determine if a table 

should be broadcast. 

4.5 "Programming Guides" 

from http://spark.apache.org/docs/latest/ 

http://spark.apache.org/docs/latest/
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Passing Functions to Spark 

 There are three recommended ways to do this: 

o Lambda expressions. Lambdas do not support multi-statement 

functions or statements that do not return a value.) 

o Local defs inside the function calling into Spark, for longer code. 

o Top-level functions in a module. 

o method in a class instance (as opposed to a singleton object), this 

requires sending the object that contains that class along with the 

method. 

o  

Lading any external files to spark dataframe : spark.read.load / 

spark.read 

df_json = spark.read.load("FILE_LOCATION.json",format="json) 
df_csv = spark.read.load("FILE_LOCATION.csv", format="csv", sep=",", inferSchema = 
"true", header = "true") 
df_parquet = spark.read.parquet("FILE_LOCATION.parquet") 
df_jdbc = spark.read \ 
    .format("jdbc") \ 
    .option("url", "jdbc:postgresql:dbserver") \ 
    .option("dbtable", "schema.tablename") \ 
    .option("user", "username") \ 
    .option("password", "password") \ 
    .load() 

Writing data to external : sdf.write.save & 

write.option("path":"DIR_LOCATION").saveAsTable("tble1") 

 .saveAsTable("tble1") : For file-based data source, e.g. text, parquet, json, etc. 

you can specify a custom table path via the path option. When the table is 

dropped, the custom table path will not be removed and the table data is still 

there. 

sdf.write.parquet("DIR_LOCATION") 
sdf.write.save(FILE_LOCATION.parquet) 

 partitionBy creates a directory structure as described in the Partition 

Discovery section. columns with high cardinality. 

 bucketBy distributes data across a fixed number of buckets and can be used 

when a number of unique values is unbounded. 

df.write 
    .partitionBy("favorite_color") 
    .bucketBy(42, "name") 
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    .saveAsTable("people_partitioned_bucketed") 

Schema Merging 

 Like ProtocolBuffer, Avro, and Thrift, Parquet also supports schema evolution. 

Users can start with a simple schema, and gradually add more columns to the 

schema as needed. 

 In this way, users may end up with multiple Parquet files with different but 

mutually compatible schemas. 

 The Parquet data source is now able to automatically detect this case and 

merge schemas of all these files. 

spark.read.option("mergeSchema", "true").parquet("FOLDER_LOCATION") 

Parquet Files 

 Parquet is a columnar format that is supported by many other data processing 

systems. 

 Spark SQL provides support for both reading and writing Parquet files that 

automatically preserves the schema of the original data. 

 When writing Parquet files, all columns are automatically converted to be 

nullable for compatibility reasons. 

HIVE vs Parquet 

 Hive is case insensitive, while Parquet is not 

 Hive considers all columns nullable, while nullability in Parquet is significant 

Best way to load data from URL to spark - Pandas 

#Example to load csv 
import pandas as pd 
sdf = 
spark.createDataFrame(pd.read_csv("https://raw.githubusercontent.com/fivethirtyeig
ht/data/master/airline-safety/airline-safety.csv")) 

Pandas in spark 

 Scalar Pandas UDFs are used for vectorizing scalar operations. 

 They can be used with functions such as select and withColumn 

 toPandas() will convert the Spark DataFrame into a Pandas DataFrame, which 

is of course in memory. 
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def multi_fun(a, b): 
  return a * b 
 
x = pd.Series([1,2,3,4]) 
multi = pandas_udf(multi_fun,returnType=LongType()) 
sdf= spark.createDataFrame(pd.DataFrame(x, columns=["x"])) 
sdf.select(multi(col("x"),col("x"))).show() 

Grouped Map on Pandas df : Split-apply-combine 

 Grouped map Pandas UDFs are used with groupBy().apply() which implements 

the “split-apply-combine” pattern. 

 Split-apply-combine consists of three steps: 

o Split the data into groups by using DataFrame.groupBy. 

o Apply a function on each group. The input data contains all the rows 

and columns for each group. 

o Combine the results into a new DataFrame. 

from pyspark.sql.functions import  pandas_udf, PandasUDFType 
 
sdf_grp = spark.createDataFrame([(1,10),(2,10),(3,30)],("id","v")) 
 
@pandas_udf("id integer, v double", PandasUDFType.GROUPED_MAP) 
def fun_1(pdf): 
  v = pdf.v 
  return pdf.assign(v = v - v.mean()) 
 
sdf_grp.groupBy("id").apply(fun_1).show() 

Arrow : JVM to Python data xfer 

 Apache Arrow is an in-memory columnar data format. 

 that is used in Spark to efficiently transfer data between JVM and Python 

processes 

 good with Pandas/NumPy data. 

 PyArrow - pip install pyspark[sql] 

 ***‘spark.sql.execution.arrow.enabled’ to ‘true’ 

NaN 

 There is specially handling for not-a-number (NaN) 

 when dealing with float or double types that does not exactly match standard 

floating point semantics. 

5. SPARKSESSION & PYSPARK.SQL.FUNCTIONS f 
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http://spark.apache.org/docs/2.2.0/api/python/pyspark.sql.html 

 functions could be passed to API to perform operations 

 like aggregate functions used with 'agg' API 

from pyspark.sql import functions f 

lit() 

Creates a Column of literal value 

df.withColumn("col1", f.when("col2") == 0, f.lit("Y")).otherwise(f.lit("N"))) 

monotonically_increasing_id() 

A column that generates monotonically increasing 64-bit integers. monotonically 

increasing and unique, but not consecutive. 

df.withColumn("new_id", f.monotonically_increasing_id()) 

SparkSession.table() 

Returns the specified table as a DataFrame. 

expr() 

Parses the expression string into the column that it represents 

col_condn = f.exppr("if(col is null, 1,0)")  
df.withColumn("col1",col_condn) 

JOIN 

http://www.learnbymarketing.com/1100/pyspark-joins-by-example/ 

https://spark.apache.org/docs/2.3.0/api/python/pyspark.sql.html 

https://spark.apache.org/docs/2.3.0/api/python/_modules/pyspark/sql/dataframe.ht

ml#DataFrame.join 

df_res = df_one.join(df_two,df_one.col1 == df_two.col1,"left")  
df_res = df_one.join(other=df_two,on=["col1"],how="left") 
df_res = df_one.alias("a").join(df_two.alias("b"),col("a.col1") == 
col("b.col1"),"left")  

 (inner, outer, left_outer, right_outer, leftsemi) 

 Join takes three parameters: DataFrame on the right side of the join, Which 

fields are being joined on, and what type of join 

http://spark.apache.org/docs/2.2.0/api/python/pyspark.sql.html
http://www.learnbymarketing.com/1100/pyspark-joins-by-example/
https://spark.apache.org/docs/2.3.0/api/python/pyspark.sql.html
https://spark.apache.org/docs/2.3.0/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.join
https://spark.apache.org/docs/2.3.0/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.join
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 An inner join is the default join type used 

 default inner. Must be one 

of: inner, cross, outer, full, full_outer, left, left_outer, right, right_outer, lef

t_semi, and left_anti 

 ‘leftsemi’ if you care only for the left columns and just want to pull in the 

records that match in both table A and table B, y 

  

distinct() 

https://stackoverflow.com/questions/30959955/how-does-distinct-function-work-in-

spark 

 shuffle data accross partition 

 

dataFrame.checkpoint 

https://dzone.com/articles/what-are-spark-checkpoints-on-dataframes 

https://stackoverflow.com/questions/35127720/what-is-the-difference-between-

spark-checkpoint-and-persist-to-a-disk 

 Returns a checkpointed version of this dataset. 

 Checkpointing can be used to truncate the logical plan of this dataset, 

which is especially useful in iterative algorithms where the plan may grow 

exponentially. 

 It will be saved to files inside the checkpoint directory set with 

SparkContext#setCheckpointDir. 

 types : Eager Checkpoint & Non-Eager Checkpoint 

 eager – Whether to checkpoint this DataFrame immediately 

df.checkpoint 

pyspark.sql.window 

https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-

sql.html 

 

window_condn = window \ 
               .partitionby(df.col_date) \                
               .rangeBetween(min_val, max_val) \ 

https://stackoverflow.com/questions/30959955/how-does-distinct-function-work-in-spark
https://stackoverflow.com/questions/30959955/how-does-distinct-function-work-in-spark
https://dzone.com/articles/what-are-spark-checkpoints-on-dataframes
https://stackoverflow.com/questions/35127720/what-is-the-difference-between-spark-checkpoint-and-persist-to-a-disk
https://stackoverflow.com/questions/35127720/what-is-the-difference-between-spark-checkpoint-and-persist-to-a-disk
https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html
https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html
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               .rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing) 
\ 
               .OrderBy(df.col_date)  
 
df_new = df.withColumn('col1',f.sum('col2')).over(window_condn)    

df.pivote 

https://databricks.com/blog/2016/02/09/reshaping-data-with-pivot-in-apache-

spark.html 

 Pivots a column of the current DataFrame and perform the specified 

aggregation. 

 There are two versions of pivot function: one that requires the caller to specify 

the list of distinct values to pivot on, and one that does not. 

 The latter is more concise but less efficient, because Spark needs to first 

compute the list of distinct values internally. 

f.explode(col) 

Returns a new row for each element in the given array or map. 

new_df = df.select(f.explode(df.col1)) 

df.groupBy(*cols) 

Groups the DataFrame using the specified columns, so we can run aggregation on 

them. See GroupedData for all the available aggregate functions. 

df.groupBy(df.col1).count().collect() 

df.agg(*expr) 

Aggregate on the entire DataFrame without groups (shorthand for df.groupBy.agg()). 

df.groupBy(df.col1).agg(a.max(df.col1)) 

 get non groupby cols in df 

pyspark.sql.functions import collect_set 
df.groupBy(df.col1).agg(a.collect_set(df.col2)) 
 
col1  collect_set(col2) 
1     [2,3] 
5     [7,9] 

pyspark.sql.types.ArrayType 

https://databricks.com/blog/2016/02/09/reshaping-data-with-pivot-in-apache-spark.html
https://databricks.com/blog/2016/02/09/reshaping-data-with-pivot-in-apache-spark.html
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from pyspark.sql.functions import udf 
@udf(returnType=ArrayType(StringType())) 
def func_test_udf(a): 
   return [] 
  
 new_df = df.withColumn("new_col", func_test_udf(df.col1)) 
 
An error occurred while calling 
None.org.apache.spark.sql.execution.python.UserDefinedPythonFunction. Trace: 
class org.apache.spark.sql.types.ArrayType]) does not exist 

df.filter() 

df_new = df.filter(col("col1").isNotNull & col("col1") > 100) 

f.first(col) 

Aggregate function: returns the first value in a group. 

df.distinct() 

df.select("abc").distinct() 

add / remove cols 

sdf.withColumn("new_col",lit(1)) 
 
sdf.drop("new_col) 

eqNullSafe 

 include NULL values in the join 

sdf_1.join(sdf_2,sdf_1.col_1.eqNullSafe(sdf_2.col_1)) 

RDD , partition , tasks etc.. 

https://qubole.zendesk.com/hc/en-us/articles/217111026-Reference-Relationship-

between-Partitions-Tasks-Cores 

 # of Spark RDD / Data Frame Partitions = Result of Partitioning Logic for 
Spark Function 

 For the first task this is driven by the number of files in the source: # of Tasks 
required for Stage = # of Source Partitions 

 For the subsequent tasks this is driven by the number of partitions from the 

prior stages: # of Tasks required for Stage = # of Spark RDD / Data Frame 
Partitions 

 

https://qubole.zendesk.com/hc/en-us/articles/217111026-Reference-Relationship-between-Partitions-Tasks-Cores
https://qubole.zendesk.com/hc/en-us/articles/217111026-Reference-Relationship-between-Partitions-Tasks-Cores
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Disclaimer: All data and information provided on this site is for informational 

purposes only. This site makes no representations as to accuracy, completeness, 

correctness, suitability, or validity of any information on this site & will not be 

liable for any errors, omissions, or delays in this information or any losses, 

injuries, or damages arising from its display or use. All information is provided on 

an as-is basis. 

 


